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M AT E R I A L S  S C I E N C E

In-sensor multilevel image adjustment for high-clarity 
contour extraction using adjustable 
synaptic phototransistors
Jong Ik Kwon1,2†, Ji Su Kim3,4†, Hyojin Seung3,4, Jihoon Kim3,4, Hanguk Cho3,4, Tae-Min Choi5, 
Jungwon Park3,4, Juyoun Park5, Jung Ah Lim6,7,8, Moon Kee Choi2,3*,  
Dae-Hyeong Kim3,4*, Changsoon Choi1*

Robotic vision has traditionally relied on high-performance yet resource-intensive computing solutions, which 
necessitate high-throughput data transmission from vision sensors to remote computing servers, sacrificing 
energy efficiency and processing speed. A promising solution is data compaction through contour extraction, 
visualizing only the outlines of objects while eliminating superfluous backgrounds. Here, we introduce an 
in-sensor multilevel image adjustment method using adjustable synaptic phototransistors, enabling the capture 
of well-defined images with optimal brightness and contrast suitable for achieving high-clarity contour extrac-
tion. This is enabled by emulating dopamine-mediated neuronal excitability regulation mechanisms. Electrostatic 
gating effect either facilitates or inhibits time-dependent photocurrent accumulation, adjusting photo-responses 
to varying lighting conditions. Through excitatory and inhibitory modes, the adjustable synaptic phototransistor 
enhances visibility of dim and bright regions, respectively, facilitating distinct contour extraction and high-
accuracy semantic segmentation. Evaluations using road images demonstrate improvement of both object detec-
tion accuracy and intersection over union, and compression of data volume.

INTRODUCTION
Recent progress in robotic vision has advanced mobile system 
technologies (1–3), including autonomous vehicles and unmanned 
aerial systems, by enabling them to capture and interpret their 
surrounding visual data effectively (4–6). The robotic vision sensors 
(e.g., high-definition cameras) generate a tremendous volume of 
image data, reaching up to 40 Gb s−1, and these massive data are 
analyzed by using sophisticated data processing techniques for deci-
sion of next tasks (7–9). Such high-throughput data stream places 
considerable pressure on processing units, often exceeding the pro-
cessing power and storage capacities of onboard systems (10–12). 
Consequently, there is an increasing reliance on high-performance 
computing solutions, particularly cloud computing, optimized for 
both managing vast datasets and executing complex data process-
ing (13–15). However, there is a major bottleneck in these sys-
tems; the latency in data transmission, especially from vision sensors 
to remote servers (16), impeding prompt responsiveness and fast 
decision-making (17–19).

An ideal strategy for mitigating latency issues is compressing vi-
sual data into a compact format (20, 21), selectively retaining only 
crucial information (22, 23). This strategy not only reduces data vol-
ume but also facilitates high-accuracy object detection. A key tech-
nique in the data compaction methodology is contour extraction, 
which simplifies the image into clear and manageable contours that 
can be classified into semantic classes (e.g., semantic segmentation) 
(24, 25). As a result, there have been considerable efforts on develop-
ing robust contour extraction techniques, e.g., thresholding methods 
and edge-detection methods, all of which target the same objective-
production of clear contour-extracted images that high-performance 
computing solutions can accurately recognize (26–28).

This goal is closely tied to the quality of images (29). Well-defined 
images with optimal brightness and contrast through image adjust-
ments result in facile contour extraction with minimal noise, facili-
tating accurate object detection as well as efficient data transmission 
(see fig. S1A in which contour-extracted images with different levels 
of image adjustment are compared). However, software-based image 
adjustment methods incur computational burdens (e.g., increased 
power consumption and data latency) on processors that should 
operate within limited performance capacities [fig. S1B (i)] (30, 31). 
Regarding this issue, vision sensors based on synaptic photode-
tectors can present a potential solution (32–34). The synaptic photo-
detectors can perform contrast enhancement through in-sensor 
processing, e.g., amplifying critical signals and filtering out back-
ground noise (35, 36), thus offering energy-efficient and high-
bandwidth solutions [fig. S1B (ii)]. However, the key challenge is how 
to maximize visual perception accuracy across diverse environmen-
tal conditions, e.g., light-scattered sunny days and dim cloudy days.

Here, we tackle this challenge by proposing a hardware-level 
in-sensor multilevel image adjustment method using adjustable 
synaptic phototransistors, optimizing image brightness and contrast 
across bright and dim regions for achieving high-clarity contour 
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extraction. This adjustable feature of the phototransistor is inspired 
by dopamine-mediated neuronal excitability regulation of human 
synapses (37), where dopamine influences the excitatory postsynap-
tic potential (EPSP) accumulation amplitude via excitatory or inhibi-
tory interactions with dopamine receptors (38–40). This regulatory 
mechanism is emulated by using a synaptic phototransistor with 
multi-gating effects, i.e., electrostatic gating effect by a gate-applied 
bias coupled with photogating effect by interfacial hole trapping. 
Specifically, the electrostatic gating effect either facilitates or inhibits 
the time-dependent photocurrent generation induced by photogat-
ing effect, modulating the photocurrent accumulation amplitude. 
With such features, the adjustable synaptic phototransistors can 
enhance details of both bright and dim regions in target images 
via inhibitory and excitatory modes of in-sensor multilevel image 
adjustment, respectively, enabling high-clarity contour extraction 
under various lighting conditions. Upon the simulation with DeepLab 
v3+ model (41) using Cambridge-driving Labeled Video Database 
(CamVid) (42), contours of road images can be extracted with high-
level clarity through in-sensor processing, facilitating precise semantic 
segmentation with a global accuracy of ~86.7% as well as improving 
data transmission efficiency with a compression ratio of ~91.8%.

RESULTS
In-sensor multilevel image adjustment for high-clarity 
contour extraction
The adjustable feature of the phototransistor is inspired by dopamine-
mediated neuronal excitability regulation of human synapses. In hu-
man synapses, signal transmission between neurons begins with the 
release of excitatory neurotransmitters (e.g., glutamate), triggered 
by the arrival of presynaptic action potentials (APs) (Fig. 1A, left) 
(43). These neurotransmitters bind glutamate receptors on postsyn-
aptic neurons to generate EPSP. As consecutive presynaptic APs 
arrive, EPSPs accumulate across dendrites. Synaptic photodetectors 
have been developed by emulating these glutamatergic responses 
(fig. S2, A to C), aiming at contrast enhancement through in-sensor 
processing (28, 30, 35). However, the amplitude of photocurrent 
accumulation in traditional synaptic photodetectors is fixed as a 
specific value, which often cannot be optimal under uneven and 
dynamic light conditions encountered in various robotic vision sce-
narios (44). To ensure consistently high quality of the robot vision 
regardless of fluctuations in the lighting condition, both brightness 
and contrast of the vision system should be elaborately adjusted.

In the case of synapse, the EPSP accumulation amplitude is regu-
lated by the interaction of dopamine with dopamine receptors on post-
synaptic neurons such as excitatory D1-like receptors or inhibitory 
D2-like receptors, referred to as dopaminergic responses (Fig. 1A, 
right, and fig. S2D) (37). Specifically, activation of D1-like receptors 
phosphorylates glutamate receptors and promotes their expression 
on the cell surface, thereby facilitating neuronal excitability and 
increasing the EPSP amplitude [fig. S2E (i)] (38, 45). In contrast, 
activation of D2-like receptors leads to a reduced expression of glu-
tamate receptors on the cell surface and the closure of ion channels, 
inhibiting neuronal excitability for glutamatergic responses and 
decreasing the EPSP amplitude [fig. S2E (ii)]. See text S1 for details of 
EPSP accumulation features coupled with dopamine-mediated neu-
ronal excitability regulation.

Inspired by this mechanism of dopamine-mediated neuronal excit-
ability regulation, we fabricate the adjustable synaptic phototransistor, 

whose photocurrent accumulation amplitude is regulated by the elec-
trostatic gating bias (Vel). More details about the device fabrication are 
provided in Materials and Methods and fig. S3. Please note that our 
synaptic phototransistor exhibits time-dependent photocurrent gener-
ation due to photogating effect induced by interfacial hole trapping 
(Vph) at the MoS2 channel (Fig. 1B, left) (32). Vel modulates the photo-
current generation amount and, thus, either facilitates or inhibits the 
photocurrent accumulation, analogous to how dopamine receptors 
provide excitatory or inhibitory pathways, respectively (Fig. 1B, right).

For example, with a low Vel (inhibitory mode), the photocurrent 
accumulation amplitude can be suppressed. Consequently, an ade-
quate light dose, both in terms of duration and intensity, is necessary 
to accumulate the photocurrent above the activation threshold (i.e., 
a point where the photocurrent becomes distinguishable from dark 
current) [fig. S2F (ii)]. This leads to selective filtering of dim regions 
(i.e., regions with insufficient light dose), leaving only the bright re-
gions [Fig. 1C (i)]. On the other hand, a high Vel (excitatory mode) 
amplifies the photocurrent accumulation amplitude [fig. S2F (i)], 
intensifying dim objects while causing bright objects to saturate 
[Fig. 1C (ii)]. This results in another image, where the visibility of 
dim regions can be enhanced. Through either inhibitory or excit-
atory mode, therefore, the adjustable synaptic phototransistors can 
extract two distinct images from a single scene: one highlights bright 
regions and the other highlights dim regions (Fig. 1C).

The photocurrent accumulation characteristics can be tailored 
even more finely according to various lighting conditions by modu-
lating Vel as more discrete values, which enables image adjustment 
by multiple levels via in-sensor processing. This in-sensor multilevel 
image adjustment ensures the acquisition of clear images with opti-
mal brightness and contrast across regardless of dim or bright regions. 
This feature is particularly effective in varying lighting scenarios, 
from intense bright condition of sunny days to subdued light condi-
tion of cloudy days. For sunny days, an image acquired with Vel of 
−5 V selectively enhances visibility in bright regions by filtering out 
dimmer areas (Fig. 1D, red box). Conversely, Vel of −1 V selectively 
accentuates dim regions by saturating overly bright regions, visual-
izing shadowed or less-illuminated areas clearly (Fig. 1D, blue box). 
For cloudy days, relatively higher Vel (e.g., 1 V for bright regions and 
2 V for dim regions) can be applied to counterbalance low-intensity 
surroundings (Fig. 1E), ensuring balanced image capture despite 
environmental light condition changes. See fig. S4 for the proposed 
workflow of adjustable synaptic phototransistors.

Two in-sensor–adjusted images, each emphasizing either bright 
or dim regions, can be used to achieve high-clarity contour extrac-
tion (Fig. 2A). First, each image is binarized using the adaptive 
thresholding method, producing two contour-extracted images that 
highlight details in bright and dim regions, respectively. These 
contour-extracted images are then merged using AND logic opera-
tion, creating a high-clarity contour-extracted image that incorpo-
rates details from both bright and dim regions (Fig. 2A, middle). 
Please note that conventional image processing methods often yield 
low-clarity contours that deep neural networks can struggle to inter-
pret [see incorrect pixel classification in Fig. 2B (i)]. These methods, 
thus, require additional data processing steps for image adjustment, 
which lead to increased power consumption and data latency. In 
contrast, our in-sensor processing method not only streamlines the 
image processing workflow but also achieves high-clarity contour 
extraction, thereby enhancing both accuracy and efficiency of semantic 
segmentation [Fig. 2B, (ii), and fig. S1B]. See movies S1 and S2 to 
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compare contour extraction by the proposed method and that by 
the conventional image processing method under different light 
conditions, e.g., sunny and cloudy days. The contour extraction results 
for additional scenarios, including indoor environments and night-
time conditions, are also shown in movies S3 and S4.

Characterization of adjustable synaptic phototransistors
The key attributes enabling the in-sensor multilevel image adjust-
ment are the time-dependent photo-response for photocurrent 
accumulation and its electrostatic regulation for adjustable func-
tionality. To integrate these attributes within a single device, we 

fabricate the synaptic phototransistor consisting of a monolayer MoS2 
channel, graphene source/drain electrodes, a poly(1,3,5-trimethyl-
1,3,5-trivinyl cyclotrisiloxane) (pV3D3) dielectric, and a Ti/Au gate 
electrode (Fig. 3, A and B). Despite some light loss caused by the top 
gate electrode (fig. S5), this device structure is effective in achieving 
time-dependent photo-response due to the abundant interfacial 
charge traps at the MoS2-pV3D3 heterostructure (32). Furthermore, 
this device ensures long-term stability over time and demonstrate 
durability through repeated measurements (fig. S6).

In this device architecture, conductivity of the MoS2 channel 
is affected by multi-gating effects: (i) photogating effect by hole 

Fig. 1. In-sensor multilevel image adjustment enabled by adjustable synaptic phototransistors. (A) Schematic illustration of biological synapses showing glutama-
tergic response for EPSP accumulation and its dopaminergic regulation. (B) Schematic illustration of adjustable synaptic phototransistors with light-induced photogating 
effect for photocurrent accumulation and gate bias-driven electrostatic gating effect for photocurrent regulation. (C) Schematic showing in-sensor multilevel image 
adjustment capabilities of adjustable synaptic phototransistors. Images highlighting either bright or dim regions are selectively captured through inhibitory (top) and 
excitatory (bottom) modes, respectively. It is achieved by nonlinear optoelectronic conversion from optical inputs to electrical outputs, enabled by time-dependent 
photocurrent accumulation with activation threshold. (D and E) In-sensor–adjusted images under varying Vel (simulations) from real-world road-driving scenarios under 
sunny (D) and cloudy (E) conditions. Blue and red boxes indicate dim and bright regions, respectively.
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trapping at the MoS2-pV3D3 heterointerface and (ii) electrostatic 
gating effect by electron accumulation at the gate electrode (Fig. 
3C). Both effects generate localized electrical fields that modulate 
Fermi level of the MoS2 channel (fig. S7), thereby altering the chan-
nel conductivity (46, 47). The detailed mechanisms of the Fermi 
level modulation by the multi-gating effects are described in text S2.

The photogating effect results in time-dependent photocurrent 
accumulation due to the slow dynamics of interfacial hole trapping 
(32). Also, the probability of interfacial hole trapping and, thus, the 
extent of photogating depend on the light dose, defined as the prod-
uct of light intensity and light irradiation duration; higher light dose 
results in larger photocurrent accumulation. Additionally, electro-
static gating effect, controlled by Vel, finely regulates the photocur-
rent accumulation characteristics by introducing additional electric 
fields that offset the photogating effect. More negative Vel requires 
greater photogating effect to accumulate a specific photocurrent level, 

which, in turn, necessitates increased interfacial hole trapping facili-
tated by higher light dose (Fig. 3D) (47). As a result, under positive 
Vel, low light dose is sufficient to accumulate the desired photocur-
rent, whereas more negative Vel demands higher light dose to reach 
the same current level.

Consequently, our device exhibits Vel-dependent activation thresh-
old, i.e., the light dose necessary to generate threshold photocur-
rent (Ith) varies with Vel (Fig. 3E). We set Ith as 0.10 nA to represent 
the minimal photocurrent distinguishable from the dark current. 
If the light dose is below the activation threshold, then photocur-
rent remains negligible. However, once the light dose exceeds this 
threshold, photocurrent begins to accumulate substantially. Fur-
thermore, more negative Vel increases the light dose required to 
reach the activation threshold.

For instance, under low light dose conditions (e.g., light expo-
sure with intensity of 0.70 mW cm−2 and duration of 220 ms), which 

Fig. 2. High-clarity semantic segmentation enabled by in-sensor multilevel image adjustment. (A) Schematic illustration showing semantic segmentation workflow 
based on adjustable synaptic phototransistors. Contours in the two in-sensor–adjusted images, each of which highlights dim (top) and bright (bottom) regions through 
excitatory and inhibitory modes, respectively, are extracted and merged to produce a high-clarity contour-extracted image that neural networks accurately recognize. 
(B) Comparative semantic segmentation results of a road-driving image for conventional image processing method (left) and our proposed in-sensor processing method 
(simulation) (right). The colored overlays represent areas recognized as distinct objects by DeepLab v3+ model, showing high-clarity contour extraction and high-
accuracy semantic segmentation achieved through in-sensor multilevel image adjustment.
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are insufficient to reach the activation threshold, photocurrent less 
than Ith is generated with Vel of −5 V (Fig. 3E). However, once this 
threshold is surpassed by increasing light intensity or extending 
exposure duration, the photocurrent exceeds Ith and increases (fig. 
S8). Meanwhile, applying more positive Vel allows the photocurrent 
to reach Ith with lower light dose. Specifically, Fig. 3F presents how 
accumulated photocurrents vary according to light intensity and 
exposure duration, dependent on Vel. The dark blue areas represent 
light doses below the threshold, where the accumulated photocur-
rent is less than Ith. As Vel decreases from 2 to −5 V, the dark blue 
areas expand, indicating that a higher light dose is required to com-
pensate for the Vel reduction. In addition, the adjustable synaptic 
phototransistor exhibit Vel-dependent activation threshold upon 
the pulsed light irradiation, indicative of synaptic plasticity–like 
photo-responses (fig. S9).

Therefore, by adjusting Vel, we can control the activation thresh-
old, thereby regulating photocurrent accumulation characteristics, 
characterized by linearity coefficient (α; Iph = Pin

α) (Fig. 3G). These 

features enable our synaptic phototransistor to perform nonlinear 
optoelectronic conversion, transforming light intensities (optical 
inputs) into tailored photocurrents (electrical outputs) to suit vari-
ous light conditions. Specifically, with positive Vel (e.g., 0, 1, and 
2 V), α is below 1, amplifying photocurrents from dim optical inputs, 
saturating those from bright ones, and thereby enhancing contrast 
in low-light conditions [Fig. 3G (i)]. In contrast, negative Vel (from 
−1 to −5 V) increases α above 1, suppressing photocurrents from 
dim optical inputs, amplifying those from bright ones, and thus 
increasing contrast in bright regions [Fig. 3G (ii)]. This Vel-dependent 
nonlinear optoelectronic conversion enables multilevel adjustment 
of pixel intensity through in-sensor processing (fig. S10), allowing 
our device to capture two distinct images: one accentuating bright 
regions and the other highlighting dim regions.

Evaluation of in-sensor multilevel image adjustment
For evaluation of in-sensor multilevel image adjustment capabilities, 
we fabricate a 3 × 3 array of adjustable synaptic phototransistors and 

Fig. 3. Characterization of adjustable synaptic phototransistors. (A and B) Schematic illustration (A) and cross-sectional transmission electron microscopy image 
(B) of the adjustable synaptic phototransistor. Inset shows its optical microscope image. (C) Schematic illustration showing photogating effect induced by interfacial hole 
trapping and electrostatic gating effect induced by gate electron accumulation, both modulating conductivity of MoS2 channel. (D) Transfer curves of the adjustable 
synaptic phototransistor under different light intensities. (E) Time-dependent photocurrent accumulation characteristics under different Vel, ranging from −5 to 2 V, at 
light intensity of 0.70 mW cm−2. (F) The photocurrent accumulation amplitudes as a function of light intensity (Pin) and exposure duration under different Vel. (G) Nonlinear 
optoelectronic conversion of adjustable synaptic phototransistor depending on Vel, converting light intensities (left) into photocurrents (right). Photocurrent measure-
ments are conducted at 250 ms across light intensities from 0 to 1.39 mW cm−2. The photocurrents are normalized to the maximum values measured at the highest light 
intensity for each Vel, but, for positive Vel (from 0 to 2 V), the maximum value measured at Vel of −1 V is used to induce saturation from bright inputs.
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characterize it under varying lighting conditions (fig. S11). The ir-
radiated light patterns are designed to simulate bright and dim regions 
in sunny (Fig. 4A, left) and cloudy (Fig. 4B, left) days. These patterns 
are calibrated in grayscale, ranging from 0 (dark) to 255 (intensity of 
1.39 mW cm−2). Photocurrents from each pixel are measured at an 
exposure time of 250 ms under various Vel settings, tailored to either 
inhibitory or excitatory modes for each lighting scenario (Fig. 4, A 
and B, middle and right). The photocurrent accumulation charac-
teristics are shown in fig. S12.

To quantitatively assess contrast enhancement, we characterize 
image contrast (C), defined as a difference of averaged grayscale 
values (G) between pattern-irradiated areas and background areas 
(C = Gpattern − Gbackground) (4). Initially, two light patterns are pre-
pared for sunny days: One simulates bright regions (“n” pattern) and 
the other simulates dim regions (“v” pattern), each exhibiting an image 
contrast of 102 (Fig. 4A, left). Under inhibitory modes (Vel = −4 V), 
the n pattern captured by adjustable synaptic phototransistors exhib-
its an enhanced image contrast of 168.5, while the v pattern shows a 
lower contrast enhancement (C = 73.3) (Fig. 4, A, middle, and C, 

top). This indicates that the inhibitory mode effectively enhances 
visibility in bright regions but is less effective for visibility enhance-
ment in dim regions. Instead, the excitatory mode (Vel = −1 V) 
yields contrast enhancement (C = 109.5) for v pattern (Fig. 4, A, 
right, and C, top), enhancing visibility in dim regions. As such, 
high-contrast images for either bright or dim patterns can be cap-
tured through either inhibitory or excitatory modes, respectively.

For cloudy days, higher Vel is used to compensate for lower light 
intensities. Also, in this case, image contrast for bright and dim pat-
terns can be enhanced by applying Vel of 1 and 2 V, targeting inhibi-
tory and excitatory modes, respectively (Fig. 4B, middle and right). 
For example, the image contrast of the n pattern improves from 102 
to 176.8 under an inhibitory mode and that of the v pattern from 51 
to 137.1 under an excitatory mode (Fig. 4C, bottom).

The efficacy of the in-sensor multilevel image adjustment is also 
validated through simulations using the device parameters (Fig. 3G). 
Simulations are applied to driving road images under two distinct 
lighting scenarios: sunny day (intense lighting conditions; Fig. 4D, 
left) and cloudy day (subdued lighting conditions; Fig. 4E, left). 

Fig. 4. Evaluation on in-sensor multilevel image adjustment. (A and B) Normalized photocurrents measured by 3 × 3 array of adjustable synaptic phototransistors under 
patterned light irradiation of bright n pattern and dim v pattern on sunny (A) and cloudy (B) days (left). Photocurrents are measured under inhibitory (middle) and excitatory 
(right) modes, applying Vel of −4 and −1 V for sunny days, and Vel of 1 and 2 V for cloudy days, respectively. (C) Image contrast (C) comparison of in-sensor–adjusted 
images by inhibitory and excitatory modes, tailored for sunny (top) and (bottom) days. (D and E) Road-driving raw images (left) and in-sensor–adjusted images (simula-
tions) through inhibitory (middle) and excitatory (right) modes of adjustable synaptic phototransistors, on sunny (D) and cloudy (E) days. Compared to the raw images, 
bright and dim regions are accentuated by inhibitory and excitatory modes, highlighted by red and blue boxes, respectively.
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With the inhibitory mode (Vel of −4 V for sunny days and 1 V for 
cloudy days), visibility in bright regions is selectively enhanced by 
increasing the image contrast in these areas while dimming the 
shadowed or dark regions (Fig. 4, D and E, middle). Conversely, 
with the excitatory mode (Vel of −1 V for sunny days and 2 V for 
cloudy days), visibility of objects within dim regions is enhanced by 
increasing the image contrast there while saturating the bright regions 
(Fig. 4, D and E, right). With such a dual-mode operation, the visi-
bility of all bright and dim objects can be optimized, highlighted 
from the background (red and blue boxes in Fig. 4, D and E) and 
ensuring balanced perception across diverse lighting conditions. 
Please see table S1 for detailed comparisons of the adjustable synap-
tic phototransistor with previous relevant works.

Evaluation on high-clarity contour extraction
Contour extraction refers to computational vision processing tech-
niques used for data compaction, which visualizes essential object 
contours and removes unnecessary backgrounds by isolating rele-
vant characteristics based on color, intensity, and texture, ensuring 
accurate object detection as well as efficient data transmission (text 
S3 for details). To achieve high-clarity contour extraction, bright-
ness and contrast of image data should be optimal. However, additional 
software-based image processing steps for adjusting brightness and 
contrast imposes computational demands to onboard processors.

In-sensor multilevel image adjustment using adjustable synaptic 
phototransistors, which enhances visibility in either dim or bright 
regions, enables high-clarity contour extraction without additional 
computational image adjustments. For qualitative clarity evaluation, we 
compare contour extraction results from in-sensor–adjusted images to 
those from raw images and software-adjusted images. Figure 5A shows 
the original high-resolution images before contour extraction. Without 
any adjustments (neither software nor hardware approaches), contours 
of the objects (e.g., traffic signs) appear blurred and noisy (Fig. 5B). This 
issue can be addressed through software-based image adjustment 
(e.g., contrast enhancement) (Fig. 5C), but at the cost of power con-
sumption and data latency burdening onboard processors. Further-
more, contours of dark objects (e.g., trees) still remains indistinct. In 
contrast, the contour extraction results from in-sensor–adjusted images 
exhibit clear distinctions across all objects despite the absence of 
additional image adjustment steps (Fig. 5D). Another contour extrac-
tion technique, edge-detection method using Sobel operator, shows 
similar high-clarity results for in-sensor–adjusted images (fig. S13), 
validating that the in-sensor multilevel image adjustment is effective 
for contour extraction, regardless of the specific method used.

The high-clarity contour extraction enabled by adjustable synap-
tic phototransistor is also quantitatively validated using artificial 
intelligence (AI)-based evaluation methodology; the high clarity of 
contour-extracted images results in high recognition accuracy by AI 
models. Specifically, we perform convolutional neural network–
based semantic segmentation test with DeepLab v3+ model and 
road-driving dataset (CamVid) (Fig. 5E) (48). The CamVid com-
prises 701 road-driving images captured under various lighting sce-
narios, including both sunny and cloudy days. To optimize object 
detection performance, we adjust brightness and contrast of train-
ing images to balance pixel intensities across the dataset, and 40% 
contrast enhancement yields the highest accuracy (table S2). See 
text S4 and fig. S14 for details of training image adjustment.

We then compare pixel accuracy and intersection-over-union (IoU) 
metrics using the datasets of contour-extracted images, obtained from 

raw images, software-adjusted images (with 40% contrast enhance-
ment), and in-sensor–adjusted images, via adaptive thresholding 
method (Fig. 5F, fig. S15, and table S3). The in-sensor–adjusted images 
allow enhanced semantic segmentation results in comparison to raw 
images, where global accuracy increases from 83.2 to 86.7%, and 
weighted IoU increases from 0.73 to 0.79. Although software-based 
image adjustment yields higher metrics (global accuracy of 87.8% 
and weighted IoU of 0.81), it relies on additional processing for adjust-
ing image brightness and contrast, resulting in larger power con-
sumption and longer processing time than our approach.

In addition, we validate that object detection through high-
clarity contour extraction can achieve high-accuracy while com-
pressing data volume, compared to traditional approaches using raw 
road images (i.e., high-resolution images) (fig. S16). Despite sub-
stantial data compression ratio of 91.8%, achieved through contour 
extraction and data binarization, semantic segmentation achieved 
by our devices demonstrates pixel accuracy and IoU metrics compa-
rable to traditional methods (Fig. 5, G and H). The data compres-
sion ratio was calculated by comparing the data size of CamVid 
(~560 MB) with its contour-extracted counterparts (~45.8 MB).

DISCUSSION
We develop the in-sensor multilevel image adjustment method using 
adjustable synaptic phototransistors for high-clarity contour extrac-
tion. This device is inspired from dopamine-mediated neuronal 
excitability regulation mechanisms, using time-dependent photocur-
rent accumulation enabled by photogating effect and its electrostatic 
regulation by modulating gating bias. These features lead to nonlinear 
optoelectronic conversion from optical inputs to electrical outputs, 
where the linearity coefficient can be adjusted via Vel control. Conse-
quently, the adjustable synaptic phototransistor can perform in-sensor 
multilevel image adjustment, capturing well-defined images with 
optimal brightness and contrast under diverse lighting conditions. 
The clarity of extracted contours from these images is validated both 
qualitatively and quantitatively, resulting in enhancements in object 
detection performance in terms of data compaction and accuracy.

Nevertheless, breakthroughs are still required to enable the prac-
tical application of adjustable synaptic phototransistors. To this end, 
it is essential to achieve a scalable array of adjustable synaptic pho-
totransistors. This requires device-to-device uniformity, which neces-
sitates advancements in fabrication techniques, such as uniform 
synthesis of high-quality MoS2 monolayers and uniform formation of 
the MoS2-pV3D3 heterostructure (49, 50). Additionally, active-matrix 
array designs should be implemented to minimize the external wiring 
complexity as the array size scales up, ensuring stable and high-quality 
signal acquisition. Despite these challenges, our proposed method via 
in-sensor processing has high potential to optimize data transmis-
sion efficiency without compromising accuracy, paving the way for 
advanced vision processing techniques particularly for energy-efficient 
and high-performance robotic vision applications.

MATERIALS AND METHODS
Preparation of the graphene and MoS2 film
Graphene was purchased from Graphene Square. A monolayer MoS2 
film was synthesized via atmospheric pressure chemical vapor deposi-
tion process (51). Initially, a 2-inch (5.08-cm) sapphire wafer was 
cleaned through sonication in acetone and ethanol for 10 min, followed 
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by rinse in isopropyl alcohol. The cleaned substrate was loaded into 
a muffle furnace, ramped to 1000°C for 2 hours, annealed at 1000°C 
for 2 hours, and cooled down to room temperature under with nitrogen 
gas purge. Subsequently, a precursor solution of NaCl-MoO2 was spin 
coated onto the sapphire substrate. Monodisperse MoO2 nanoparticles 
were prepared via colloidal synthesis, and methanol solution contain-
ing NaCl (0.1 M) was added to the MoO2 solution at volume ratio of 
1:50. A crucible containing sulfur powder (15 mg) and the spin-coated 
sapphire substrate were loaded into two separate furnaces, heated at 
150° and 650°C, respectively, under argon flow of 500 standard 

cubic centimeters per minute. After growth period of 30 min, furnaces 
were opened and cooled down to room temperature.

Fabrication and characterization of the adjustable 
synaptic phototransistor
The fabrication process of the adjustable synaptic phototransistor 
began with the transfer of graphene film (~2 nm) onto Si3N4 layer 
(50 nm), deposited on a Si wafer. Ti/Au electrodes (5/25 nm) were 
deposited and patterned using liftoff process, and the graphene was 
patterned as interdigitated source/drain electrodes with a channel 

Fig. 5. Evaluation on high-clarity contour extraction. (A to D) High-resolution images (i.e., raw images) (A) of roundabout (top) and crosswalk (bottom) and contour-
extracted images via adaptive thresholding method from raw images (B), software-based adjusted images (40% contrast enhancement) (C), and in-sensor–adjusted im-
ages (simulation) (D). (E) Schematic showing the architecture of DeepLab v3+ model for semantic segmentation test on contour-extracted dataset of road images. 
(F) Global accuracy and weighted intersection-over-union (IoU) metrics across contour-extracted datasets obtained from raw images, software-adjusted images, and 
in-sensor–adjusted images. (G) Global accuracy and loss of semantic segmentation test over training epochs for original (i.e., high-resolution) and contour-extracted (C. E.) 
dataset. (H) Per-class accuracy and IoU across original and contour-extracted (C. E.) dataset. ASPP, Atrous Spatial Pyramid Pooling.
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length of 10 μm by photolithography and dry etching. The mono-
layer MoS2 film was transferred onto the graphene electrodes and 
patterned by photolithography and dry etching. A pV3D3 dielectric 
(30 nm) was deposited using initiated chemical vapor deposition 
and patterned by photolithography and dry etching. Last, Ti/Au gate 
electrodes (5/25 nm) were deposited by thermal evaporation and 
patterned using liftoff process.

A cross-sectional image of adjustable synaptic phototransistor 
was captured using Cs corrected transmission electron microscope 
(JEM-ARM200F, JEOL, Japan). The transmittance of top gate structure 
was measured using an ultraviolet–visible–near-infrared spectro-
photometer (Lambda 750, PerkinElmer). Fermi level of MoS2-pV3D3 
heterostructure under various Vel was analyzed using Kelvin probe 
force microscopy (XE 100, Park Systems, Korea). Transfer curves of 
adjustable synaptic phototransistors were characterized using a 
parameter analyzer (B1500A, Agilent, USA). Photocurrent measure-
ments for analyzing time-dependent photo-response were performed 
using a multichannel analog-to-digital converter after converting 
the photocurrent into the voltage signal with a preamplifier (SR570, 
Stanford Research Systems, USA) (fig. S11). A commercial green 
light-emitting diode (peak emission wavelength of 520 nm) was 
used as light source, and its intensity and exposure duration were 
controlled using an Arduino Uno board.

Simulation using empirical parameters of adjustable 
synaptic phototransistor
To validate the feasibility of in-sensor multilevel image adjustment 
for high-clarity contour extraction, simulations were conducted to 
emulate the in-sensor–adjusted images using empirical parameters 
derived from Vel-dependent nonlinear optoelectronic conversion of 
the adjustable synaptic phototransistor. The accumulated photocur-
rents of adjustable synaptic phototransistor were measured under 
varying light intensities, exposure durations, Vel (fig. S8). Based on 
these measurement results, a lookup table of normalized photocur-
rent values at exposure duration of 250 ms was created through inter-
polation (Fig. 3G).

The simulation process involved converting the light intensities of 
high-resolution raw images into corresponding values from the lookup 
table based on specific Vel, thereby generating in-sensor–adjusted 
images. The Vel values of excitatory and inhibitory modes were 
selected according to the lighting conditions. Subsequently, contours 
were extracted from the in-sensor–adjusted images, and the contour-
extracted images for both modes were merged using logic operations 
to generate a high-clarity contour-extracted image. All relevant source 
codes are included in the Supplementary Materials.

Supplementary Materials
The PDF file includes:
Text S1 to S4
Figs. S1 to S18
Tables S1 to S3
Legends for movies S1 to S4
References

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4
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