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Robotic vision has traditionally relied on high-performance yet resource-intensive computing solutions, which License 4.0 (CC BY-NC).
necessitate high-throughput data transmission from vision sensors to remote computing servers, sacrificing

energy efficiency and processing speed. A promising solution is data compaction through contour extraction,

visualizing only the outlines of objects while eliminating superfluous backgrounds. Here, we introduce an

in-sensor multilevel image adjustment method using adjustable synaptic phototransistors, enabling the capture

of well-defined images with optimal brightness and contrast suitable for achieving high-clarity contour extrac-

tion. This is enabled by emulating dopamine-mediated neuronal excitability regulation mechanisms. Electrostatic

gating effect either facilitates or inhibits time-dependent photocurrent accumulation, adjusting photo-responses

to varying lighting conditions. Through excitatory and inhibitory modes, the adjustable synaptic phototransistor

enhances visibility of dim and bright regions, respectively, facilitating distinct contour extraction and high-

accuracy semantic segmentation. Evaluations using road images demonstrate improvement of both object detec-

tion accuracy and intersection over union, and compression of data volume.

INTRODUCTION

Recent progress in robotic vision has advanced mobile system
technologies (1-3), including autonomous vehicles and unmanned
aerial systems, by enabling them to capture and interpret their
surrounding visual data effectively (4-6). The robotic vision sensors
(e.g., high-definition cameras) generate a tremendous volume of
image data, reaching up to 40 Gb s, and these massive data are
analyzed by using sophisticated data processing techniques for deci-
sion of next tasks (7-9). Such high-throughput data stream places
considerable pressure on processing units, often exceeding the pro-
cessing power and storage capacities of onboard systems (10-12).
Consequently, there is an increasing reliance on high-performance
computing solutions, particularly cloud computing, optimized for
both managing vast datasets and executing complex data process-
ing (13-15). However, there is a major bottleneck in these sys-
tems; the latency in data transmission, especially from vision sensors
to remote servers (16), impeding prompt responsiveness and fast
decision-making (17-19).
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An ideal strategy for mitigating latency issues is compressing vi-
sual data into a compact format (20, 21), selectively retaining only
crucial information (22, 23). This strategy not only reduces data vol-
ume but also facilitates high-accuracy object detection. A key tech-
nique in the data compaction methodology is contour extraction,
which simplifies the image into clear and manageable contours that
can be classified into semantic classes (e.g., semantic segmentation)
(24, 25). As a result, there have been considerable efforts on develop-
ing robust contour extraction techniques, e.g., thresholding methods
and edge-detection methods, all of which target the same objective-
production of clear contour-extracted images that high-performance
computing solutions can accurately recognize (26-28).

This goal is closely tied to the quality of images (29). Well-defined
images with optimal brightness and contrast through image adjust-
ments result in facile contour extraction with minimal noise, facili-
tating accurate object detection as well as efficient data transmission
(see fig. S1A in which contour-extracted images with different levels
of image adjustment are compared). However, software-based image
adjustment methods incur computational burdens (e.g., increased
power consumption and data latency) on processors that should
operate within limited performance capacities [fig. S1B (i)] (30, 31).
Regarding this issue, vision sensors based on synaptic photode-
tectors can present a potential solution (32-34). The synaptic photo-
detectors can perform contrast enhancement through in-sensor
processing, e.g., amplifying critical signals and filtering out back-
ground noise (35, 36), thus offering energy-efficient and high-
bandwidth solutions [fig. S1B (ii)]. However, the key challenge is how
to maximize visual perception accuracy across diverse environmen-
tal conditions, e.g., light-scattered sunny days and dim cloudy days.

Here, we tackle this challenge by proposing a hardware-level
in-sensor multilevel image adjustment method using adjustable
synaptic phototransistors, optimizing image brightness and contrast
across bright and dim regions for achieving high-clarity contour
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extraction. This adjustable feature of the phototransistor is inspired
by dopamine-mediated neuronal excitability regulation of human
synapses (37), where dopamine influences the excitatory postsynap-
tic potential (EPSP) accumulation amplitude via excitatory or inhibi-
tory interactions with dopamine receptors (38-40). This regulatory
mechanism is emulated by using a synaptic phototransistor with
multi-gating effects, i.e., electrostatic gating effect by a gate-applied
bias coupled with photogating effect by interfacial hole trapping.
Specifically, the electrostatic gating effect either facilitates or inhibits
the time-dependent photocurrent generation induced by photogat-
ing effect, modulating the photocurrent accumulation amplitude.
With such features, the adjustable synaptic phototransistors can
enhance details of both bright and dim regions in target images
via inhibitory and excitatory modes of in-sensor multilevel image
adjustment, respectively, enabling high-clarity contour extraction
under various lighting conditions. Upon the simulation with DeepLab
v3+ model (41) using Cambridge-driving Labeled Video Database
(CamVid) (42), contours of road images can be extracted with high-
level clarity through in-sensor processing, facilitating precise semantic
segmentation with a global accuracy of ~86.7% as well as improving
data transmission efficiency with a compression ratio of ~91.8%.

RESULTS

In-sensor multilevel image adjustment for high-clarity
contour extraction

The adjustable feature of the phototransistor is inspired by dopamine-
mediated neuronal excitability regulation of human synapses. In hu-
man synapses, signal transmission between neurons begins with the
release of excitatory neurotransmitters (e.g., glutamate), triggered
by the arrival of presynaptic action potentials (APs) (Fig. 1A, left)
(43). These neurotransmitters bind glutamate receptors on postsyn-
aptic neurons to generate EPSP. As consecutive presynaptic APs
arrive, EPSPs accumulate across dendrites. Synaptic photodetectors
have been developed by emulating these glutamatergic responses
(fig. S2, A to C), aiming at contrast enhancement through in-sensor
processing (28, 30, 35). However, the amplitude of photocurrent
accumulation in traditional synaptic photodetectors is fixed as a
specific value, which often cannot be optimal under uneven and
dynamic light conditions encountered in various robotic vision sce-
narios (44). To ensure consistently high quality of the robot vision
regardless of fluctuations in the lighting condition, both brightness
and contrast of the vision system should be elaborately adjusted.

In the case of synapse, the EPSP accumulation amplitude is regu-
lated by the interaction of dopamine with dopamine receptors on post-
synaptic neurons such as excitatory D1-like receptors or inhibitory
D2-like receptors, referred to as dopaminergic responses (Fig. 1A,
right, and fig. S2D) (37). Specifically, activation of D1-like receptors
phosphorylates glutamate receptors and promotes their expression
on the cell surface, thereby facilitating neuronal excitability and
increasing the EPSP amplitude [fig. S2E (i)] (38, 45). In contrast,
activation of D2-like receptors leads to a reduced expression of glu-
tamate receptors on the cell surface and the closure of ion channels,
inhibiting neuronal excitability for glutamatergic responses and
decreasing the EPSP amplitude [fig. S2E (ii)]. See text S1 for details of
EPSP accumulation features coupled with dopamine-mediated neu-
ronal excitability regulation.

Inspired by this mechanism of dopamine-mediated neuronal excit-
ability regulation, we fabricate the adjustable synaptic phototransistor,
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whose photocurrent accumulation amplitude is regulated by the elec-
trostatic gating bias (V). More details about the device fabrication are
provided in Materials and Methods and fig. S3. Please note that our
synaptic phototransistor exhibits time-dependent photocurrent gener-
ation due to photogating effect induced by interfacial hole trapping
(Vpn) at the MoS; channel (Fig. 1B, left) (32). Vet modulates the photo-
current generation amount and, thus, either facilitates or inhibits the
photocurrent accumulation, analogous to how dopamine receptors
provide excitatory or inhibitory pathways, respectively (Fig. 1B, right).

For example, with a low V) (inhibitory mode), the photocurrent
accumulation amplitude can be suppressed. Consequently, an ade-
quate light dose, both in terms of duration and intensity, is necessary
to accumulate the photocurrent above the activation threshold (i.e.,
a point where the photocurrent becomes distinguishable from dark
current) [fig. S2F (ii)]. This leads to selective filtering of dim regions
(i.e., regions with insufficient light dose), leaving only the bright re-
gions [Fig. 1C (i)]. On the other hand, a high V; (excitatory mode)
amplifies the photocurrent accumulation amplitude [fig. S2F (i)],
intensifying dim objects while causing bright objects to saturate
[Fig. 1C (ii)]. This results in another image, where the visibility of
dim regions can be enhanced. Through either inhibitory or excit-
atory mode, therefore, the adjustable synaptic phototransistors can
extract two distinct images from a single scene: one highlights bright
regions and the other highlights dim regions (Fig. 1C).

The photocurrent accumulation characteristics can be tailored
even more finely according to various lighting conditions by modu-
lating Vi as more discrete values, which enables image adjustment
by multiple levels via in-sensor processing. This in-sensor multilevel
image adjustment ensures the acquisition of clear images with opti-
mal brightness and contrast across regardless of dim or bright regions.
This feature is particularly effective in varying lighting scenarios,
from intense bright condition of sunny days to subdued light condi-
tion of cloudy days. For sunny days, an image acquired with V of
—5 V selectively enhances visibility in bright regions by filtering out
dimmer areas (Fig. 1D, red box). Conversely, V¢ of —1 V selectively
accentuates dim regions by saturating overly bright regions, visual-
izing shadowed or less-illuminated areas clearly (Fig. 1D, blue box).
For cloudy days, relatively higher V¢ (e.g., 1 V for bright regions and
2V for dim regions) can be applied to counterbalance low-intensity
surroundings (Fig. 1E), ensuring balanced image capture despite
environmental light condition changes. See fig. S4 for the proposed
workflow of adjustable synaptic phototransistors.

Two in-sensor-adjusted images, each emphasizing either bright
or dim regions, can be used to achieve high-clarity contour extrac-
tion (Fig. 2A). First, each image is binarized using the adaptive
thresholding method, producing two contour-extracted images that
highlight details in bright and dim regions, respectively. These
contour-extracted images are then merged using AND logic opera-
tion, creating a high-clarity contour-extracted image that incorpo-
rates details from both bright and dim regions (Fig. 2A, middle).
Please note that conventional image processing methods often yield
low-clarity contours that deep neural networks can struggle to inter-
pret [see incorrect pixel classification in Fig. 2B (i)]. These methods,
thus, require additional data processing steps for image adjustment,
which lead to increased power consumption and data latency. In
contrast, our in-sensor processing method not only streamlines the
image processing workflow but also achieves high-clarity contour
extraction, thereby enhancing both accuracy and efficiency of semantic
segmentation [Fig. 2B, (ii), and fig. S1B]. See movies S1 and S2 to
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Fig. 1. In-sensor multilevel image adjustment enabled by adjustable synaptic phototransistors. (A) Schematic illustration of biological synapses showing glutama-
tergic response for EPSP accumulation and its dopaminergic regulation. (B) Schematic illustration of adjustable synaptic phototransistors with light-induced photogating
effect for photocurrent accumulation and gate bias-driven electrostatic gating effect for photocurrent regulation. (C) Schematic showing in-sensor multilevel image
adjustment capabilities of adjustable synaptic phototransistors. Images highlighting either bright or dim regions are selectively captured through inhibitory (top) and
excitatory (bottom) modes, respectively. It is achieved by nonlinear optoelectronic conversion from optical inputs to electrical outputs, enabled by time-dependent
photocurrent accumulation with activation threshold. (D and E) In-sensor-adjusted images under varying Ve (simulations) from real-world road-driving scenarios under
sunny (D) and cloudy (E) conditions. Blue and red boxes indicate dim and bright regions, respectively.

compare contour extraction by the proposed method and that by
the conventional image processing method under different light
conditions, e.g., sunny and cloudy days. The contour extraction results
for additional scenarios, including indoor environments and night-
time conditions, are also shown in movies S3 and S4.

Characterization of adjustable synaptic phototransistors

The key attributes enabling the in-sensor multilevel image adjust-
ment are the time-dependent photo-response for photocurrent
accumulation and its electrostatic regulation for adjustable func-
tionality. To integrate these attributes within a single device, we
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fabricate the synaptic phototransistor consisting of a monolayer MoS,
channel, graphene source/drain electrodes, a poly(1,3,5-trimethyl-
1,3,5-trivinyl cyclotrisiloxane) (pV3D3) dielectric, and a Ti/Au gate
electrode (Fig. 3, A and B). Despite some light loss caused by the top
gate electrode (fig. S5), this device structure is effective in achieving
time-dependent photo-response due to the abundant interfacial
charge traps at the MoS,-pV3D3 heterostructure (32). Furthermore,
this device ensures long-term stability over time and demonstrate
durability through repeated measurements (fig. S6).

In this device architecture, conductivity of the MoS, channel
is affected by multi-gating effects: (i) photogating effect by hole
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Fig. 2. High-clarity semantic segmentation enabled by in-sensor multilevel image adjustment. (A) Schematic illustration showing semantic segmentation workflow
based on adjustable synaptic phototransistors. Contours in the two in-sensor-adjusted images, each of which highlights dim (top) and bright (bottom) regions through
excitatory and inhibitory modes, respectively, are extracted and merged to produce a high-clarity contour-extracted image that neural networks accurately recognize.
(B) Comparative semantic segmentation results of a road-driving image for conventional image processing method (left) and our proposed in-sensor processing method
(simulation) (right). The colored overlays represent areas recognized as distinct objects by DeepLab v3+ model, showing high-clarity contour extraction and high-
accuracy semantic segmentation achieved through in-sensor multilevel image adjustment.

trapping at the MoS,-pV3D3 heterointerface and (ii) electrostatic
gating effect by electron accumulation at the gate electrode (Fig.
3C). Both effects generate localized electrical fields that modulate
Fermi level of the MoS; channel (fig. S7), thereby altering the chan-
nel conductivity (46, 47). The detailed mechanisms of the Fermi
level modulation by the multi-gating effects are described in text S2.

The photogating effect results in time-dependent photocurrent
accumulation due to the slow dynamics of interfacial hole trapping
(32). Also, the probability of interfacial hole trapping and, thus, the
extent of photogating depend on the light dose, defined as the prod-
uct of light intensity and light irradiation duration; higher light dose
results in larger photocurrent accumulation. Additionally, electro-
static gating effect, controlled by V, finely regulates the photocur-
rent accumulation characteristics by introducing additional electric
fields that offset the photogating effect. More negative V| requires
greater photogating effect to accumulate a specific photocurrent level,

Kwon et al., Sci. Adv. 11, eadt6527 (2025) 2 May 2025

which, in turn, necessitates increased interfacial hole trapping facili-
tated by higher light dose (Fig. 3D) (47). As a result, under positive
Ve, low light dose is sufficient to accumulate the desired photocur-
rent, whereas more negative V] demands higher light dose to reach
the same current level.

Consequently, our device exhibits V-dependent activation thresh-
old, i.e., the light dose necessary to generate threshold photocur-
rent (Iy,) varies with V) (Fig. 3E). We set Iy, as 0.10 nA to represent
the minimal photocurrent distinguishable from the dark current.
If the light dose is below the activation threshold, then photocur-
rent remains negligible. However, once the light dose exceeds this
threshold, photocurrent begins to accumulate substantially. Fur-
thermore, more negative V| increases the light dose required to
reach the activation threshold.

For instance, under low light dose conditions (e.g., light expo-
sure with intensity of 0.70 mW cm ™ and duration of 220 ms), which
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Fig. 3. Characterization of adjustable synaptic phototransistors. (A and B) Schematic illustration (A) and cross-sectional transmission electron microscopy image
(B) of the adjustable synaptic phototransistor. Inset shows its optical microscope image. (C) Schematic illustration showing photogating effect induced by interfacial hole
trapping and electrostatic gating effect induced by gate electron accumulation, both modulating conductivity of MoS; channel. (D) Transfer curves of the adjustable
synaptic phototransistor under different light intensities. (E) Time-dependent photocurrent accumulation characteristics under different Vg, ranging from —5to 2V, at
light intensity of 0.70 mW cm™2 (F) The photocurrent accumulation amplitudes as a function of light intensity (Pi,) and exposure duration under different V. (G) Nonlinear
optoelectronic conversion of adjustable synaptic phototransistor depending on V), converting light intensities (left) into photocurrents (right). Photocurrent measure-
ments are conducted at 250 ms across light intensities from 0 to 1.39 mW cm™2 The photocurrents are normalized to the maximum values measured at the highest light

intensity for each Vg, but, for positive Ve (from 0 to 2 V), the maximum value measured at Ve of —1 V is used to induce saturation from bright inputs.

are insufficient to reach the activation threshold, photocurrent less
than Iy, is generated with V, of —5 V (Fig. 3E). However, once this
threshold is surpassed by increasing light intensity or extending
exposure duration, the photocurrent exceeds Iy, and increases (fig.
S8). Meanwhile, applying more positive V¢ allows the photocurrent
to reach Iy, with lower light dose. Specifically, Fig. 3F presents how
accumulated photocurrents vary according to light intensity and
exposure duration, dependent on V. The dark blue areas represent
light doses below the threshold, where the accumulated photocur-
rent is less than Iy,. As Vg decreases from 2 to —5 V, the dark blue
areas expand, indicating that a higher light dose is required to com-
pensate for the Vi reduction. In addition, the adjustable synaptic
phototransistor exhibit V,-dependent activation threshold upon
the pulsed light irradiation, indicative of synaptic plasticity-like
photo-responses (fig. S9).

Therefore, by adjusting V,j, we can control the activation thresh-
old, thereby regulating photocurrent accumulation characteristics,
characterized by linearity coefficient (o Ion = Pin”) (Fig. 3G). These

Kwon et al., Sci. Adv. 11, eadt6527 (2025) 2 May 2025

features enable our synaptic phototransistor to perform nonlinear
optoelectronic conversion, transforming light intensities (optical
inputs) into tailored photocurrents (electrical outputs) to suit vari-
ous light conditions. Specifically, with positive V¢ (e.g., 0, 1, and
2V), ais below 1, amplifying photocurrents from dim optical inputs,
saturating those from bright ones, and thereby enhancing contrast
in low-light conditions [Fig. 3G (i)]. In contrast, negative V¢ (from
—1 to —5 V) increases a above 1, suppressing photocurrents from
dim optical inputs, amplifying those from bright ones, and thus
increasing contrast in bright regions [Fig. 3G (ii)]. This V-dependent
nonlinear optoelectronic conversion enables multilevel adjustment
of pixel intensity through in-sensor processing (fig. S10), allowing
our device to capture two distinct images: one accentuating bright
regions and the other highlighting dim regions.

Evaluation of in-sensor multilevel image adjustment
For evaluation of in-sensor multilevel image adjustment capabilities,
we fabricate a 3 X 3 array of adjustable synaptic phototransistors and
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characterize it under varying lighting conditions (fig. S11). The ir-
radiated light patterns are designed to simulate bright and dim regions
in sunny (Fig. 44, left) and cloudy (Fig. 4B, left) days. These patterns
are calibrated in grayscale, ranging from 0 (dark) to 255 (intensity of
1.39 mW cm ™). Photocurrents from each pixel are measured at an
exposure time of 250 ms under various Vy settings, tailored to either
inhibitory or excitatory modes for each lighting scenario (Fig. 4, A
and B, middle and right). The photocurrent accumulation charac-
teristics are shown in fig. S12.

To quantitatively assess contrast enhancement, we characterize
image contrast (C), defined as a difference of averaged grayscale
values (G) between pattern-irradiated areas and background areas
(C = Gpattern — Gbackground) (4). Initially, two light patterns are pre-
pared for sunny days: One simulates bright regions (“n” pattern) and
the other simulates dim regions (“v” pattern), each exhibiting an image
contrast of 102 (Fig. 4A, left). Under inhibitory modes (Vg = -4 V),
the n pattern captured by adjustable synaptic phototransistors exhib-
its an enhanced image contrast of 168.5, while the v pattern shows a
lower contrast enhancement (C = 73.3) (Fig. 4, A, middle, and C,

A Optical inputs (sunny day) Inhibitory mode (V= =4 V)

255 KN 255

B Optical inputs (cloudy day)

51 HISSN 51

iSSy 51 NISS

153

top). This indicates that the inhibitory mode effectively enhances
visibility in bright regions but is less effective for visibility enhance-
ment in dim regions. Instead, the excitatory mode (V¢ = —1 V)
yields contrast enhancement (C = 109.5) for v pattern (Fig. 4, A,
right, and C, top), enhancing visibility in dim regions. As such,
high-contrast images for either bright or dim patterns can be cap-
tured through either inhibitory or excitatory modes, respectively.

For cloudy days, higher V, is used to compensate for lower light
intensities. Also, in this case, image contrast for bright and dim pat-
terns can be enhanced by applying V,j of 1 and 2 V, targeting inhibi-
tory and excitatory modes, respectively (Fig. 4B, middle and right).
For example, the image contrast of the n pattern improves from 102
to 176.8 under an inhibitory mode and that of the v pattern from 51
to 137.1 under an excitatory mode (Fig. 4C, bottom).

The efficacy of the in-sensor multilevel image adjustment is also
validated through simulations using the device parameters (Fig. 3G).
Simulations are applied to driving road images under two distinct
lighting scenarios: sunny day (intense lighting conditions; Fig. 4D,
left) and cloudy day (subdued lighting conditions; Fig. 4E, left).

Excitatory mode (V= —1V) C Bright region  Dim region
200
124 32 135 1501 /1— Sunny day
=
153‘ pall || O 1007 ]
]
27 128 27 = 0
s
. S 200 = Cloudy day
Excitatory mode (V=2 V) % 150+
£ 1004
501
255 0 |_I
R S RS SR o
255 SIS
& Q;\S" \(\‘\ Q;\S’

Cloudy day

Fig. 4. Evaluation on in-sensor multilevel image adjustment. (A and B) Normalized photocurrents measured by 3 x 3 array of adjustable synaptic phototransistors under
patterned light irradiation of bright n pattern and dim v pattern on sunny (A) and cloudy (B) days (left). Photocurrents are measured under inhibitory (middle) and excitatory
(right) modes, applying Ve of —4 and —1 V for sunny days, and Ve of 1 and 2V for cloudy days, respectively. (C) Image contrast (C) comparison of in-sensor-adjusted
images by inhibitory and excitatory modes, tailored for sunny (top) and (bottom) days. (D and E) Road-driving raw images (left) and in-sensor-adjusted images (simula-
tions) through inhibitory (middle) and excitatory (right) modes of adjustable synaptic phototransistors, on sunny (D) and cloudy (E) days. Compared to the raw images,
bright and dim regions are accentuated by inhibitory and excitatory modes, highlighted by red and blue boxes, respectively.
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With the inhibitory mode (V of —4 V for sunny days and 1 V for
cloudy days), visibility in bright regions is selectively enhanced by
increasing the image contrast in these areas while dimming the
shadowed or dark regions (Fig. 4, D and E, middle). Conversely,
with the excitatory mode (V) of —1 V for sunny days and 2 V for
cloudy days), visibility of objects within dim regions is enhanced by
increasing the image contrast there while saturating the bright regions
(Fig. 4, D and E, right). With such a dual-mode operation, the visi-
bility of all bright and dim objects can be optimized, highlighted
from the background (red and blue boxes in Fig. 4, D and E) and
ensuring balanced perception across diverse lighting conditions.
Please see table S1 for detailed comparisons of the adjustable synap-
tic phototransistor with previous relevant works.

Evaluation on high-clarity contour extraction

Contour extraction refers to computational vision processing tech-
niques used for data compaction, which visualizes essential object
contours and removes unnecessary backgrounds by isolating rele-
vant characteristics based on color, intensity, and texture, ensuring
accurate object detection as well as efficient data transmission (text
S3 for details). To achieve high-clarity contour extraction, bright-
ness and contrast of image data should be optimal. However, additional
software-based image processing steps for adjusting brightness and
contrast imposes computational demands to onboard processors.

In-sensor multilevel image adjustment using adjustable synaptic
phototransistors, which enhances visibility in either dim or bright
regions, enables high-clarity contour extraction without additional
computational image adjustments. For qualitative clarity evaluation, we
compare contour extraction results from in-sensor-adjusted images to
those from raw images and software-adjusted images. Figure 5A shows
the original high-resolution images before contour extraction. Without
any adjustments (neither software nor hardware approaches), contours
of the objects (e.g., traffic signs) appear blurred and noisy (Fig. 5B). This
issue can be addressed through software-based image adjustment
(e.g., contrast enhancement) (Fig. 5C), but at the cost of power con-
sumption and data latency burdening onboard processors. Further-
more, contours of dark objects (e.g., trees) still remains indistinct. In
contrast, the contour extraction results from in-sensor-adjusted images
exhibit clear distinctions across all objects despite the absence of
additional image adjustment steps (Fig. 5D). Another contour extrac-
tion technique, edge-detection method using Sobel operator, shows
similar high-clarity results for in-sensor-adjusted images (fig. S13),
validating that the in-sensor multilevel image adjustment is effective
for contour extraction, regardless of the specific method used.

The high-clarity contour extraction enabled by adjustable synap-
tic phototransistor is also quantitatively validated using artificial
intelligence (AI)-based evaluation methodology; the high clarity of
contour-extracted images results in high recognition accuracy by Al
models. Specifically, we perform convolutional neural network-
based semantic segmentation test with DeepLab v3+ model and
road-driving dataset (CamVid) (Fig. 5E) (48). The CamVid com-
prises 701 road-driving images captured under various lighting sce-
narios, including both sunny and cloudy days. To optimize object
detection performance, we adjust brightness and contrast of train-
ing images to balance pixel intensities across the dataset, and 40%
contrast enhancement yields the highest accuracy (table S2). See
text S4 and fig. S14 for details of training image adjustment.

We then compare pixel accuracy and intersection-over-union (IoU)
metrics using the datasets of contour-extracted images, obtained from
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raw images, software-adjusted images (with 40% contrast enhance-
ment), and in-sensor-adjusted images, via adaptive thresholding
method (Fig. 5E fig. S15, and table S3). The in-sensor-adjusted images
allow enhanced semantic segmentation results in comparison to raw
images, where global accuracy increases from 83.2 to 86.7%, and
weighted IoU increases from 0.73 to 0.79. Although software-based
image adjustment yields higher metrics (global accuracy of 87.8%
and weighted IoU of 0.81), it relies on additional processing for adjust-
ing image brightness and contrast, resulting in larger power con-
sumption and longer processing time than our approach.

In addition, we validate that object detection through high-
clarity contour extraction can achieve high-accuracy while com-
pressing data volume, compared to traditional approaches using raw
road images (i.e., high-resolution images) (fig. S16). Despite sub-
stantial data compression ratio of 91.8%, achieved through contour
extraction and data binarization, semantic segmentation achieved
by our devices demonstrates pixel accuracy and IoU metrics compa-
rable to traditional methods (Fig. 5, G and H). The data compres-
sion ratio was calculated by comparing the data size of CamVid
(~560 MB) with its contour-extracted counterparts (~45.8 MB).

DISCUSSION
We develop the in-sensor multilevel image adjustment method using
adjustable synaptic phototransistors for high-clarity contour extrac-
tion. This device is inspired from dopamine-mediated neuronal
excitability regulation mechanisms, using time-dependent photocur-
rent accumulation enabled by photogating effect and its electrostatic
regulation by modulating gating bias. These features lead to nonlinear
optoelectronic conversion from optical inputs to electrical outputs,
where the linearity coefficient can be adjusted via V control. Conse-
quently, the adjustable synaptic phototransistor can perform in-sensor
multilevel image adjustment, capturing well-defined images with
optimal brightness and contrast under diverse lighting conditions.
The clarity of extracted contours from these images is validated both
qualitatively and quantitatively, resulting in enhancements in object
detection performance in terms of data compaction and accuracy.
Nevertheless, breakthroughs are still required to enable the prac-
tical application of adjustable synaptic phototransistors. To this end,
it is essential to achieve a scalable array of adjustable synaptic pho-
totransistors. This requires device-to-device uniformity, which neces-
sitates advancements in fabrication techniques, such as uniform
synthesis of high-quality MoS, monolayers and uniform formation of
the MoS,;-pV3D3 heterostructure (49, 50). Additionally, active-matrix
array designs should be implemented to minimize the external wiring
complexity as the array size scales up, ensuring stable and high-quality
signal acquisition. Despite these challenges, our proposed method via
in-sensor processing has high potential to optimize data transmis-
sion efficiency without compromising accuracy, paving the way for
advanced vision processing techniques particularly for energy-efficient
and high-performance robotic vision applications.

MATERIALS AND METHODS

Preparation of the graphene and MoS, film

Graphene was purchased from Graphene Square. A monolayer MoS,
film was synthesized via atmospheric pressure chemical vapor deposi-
tion process (51). Initially, a 2-inch (5.08-cm) sapphire wafer was
cleaned through sonication in acetone and ethanol for 10 min, followed
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Fig. 5. Evaluation on high-clarity contour extraction. (A to D) High-resolution images (i.e., raw images) (A) of roundabout (top) and crosswalk (bottom) and contour-
extracted images via adaptive thresholding method from raw images (B), software-based adjusted images (40% contrast enhancement) (C), and in-sensor-adjusted im-
ages (simulation) (D). (E) Schematic showing the architecture of DeepLab v3+ model for semantic segmentation test on contour-extracted dataset of road images.
(F) Global accuracy and weighted intersection-over-union (loU) metrics across contour-extracted datasets obtained from raw images, software-adjusted images, and
in-sensor-adjusted images. (G) Global accuracy and loss of semantic segmentation test over training epochs for original (i.e., high-resolution) and contour-extracted (C. E.)
dataset. (H) Per-class accuracy and loU across original and contour-extracted (C. E.) dataset. ASPP, Atrous Spatial Pyramid Pooling.

by rinse in isopropyl alcohol. The cleaned substrate was loaded into
a muffle furnace, ramped to 1000°C for 2 hours, annealed at 1000°C
for 2 hours, and cooled down to room temperature under with nitrogen
gas purge. Subsequently, a precursor solution of NaCl-MoO, was spin
coated onto the sapphire substrate. Monodisperse MoO, nanoparticles
were prepared via colloidal synthesis, and methanol solution contain-
ing NaCl (0.1 M) was added to the MoO, solution at volume ratio of
1:50. A crucible containing sulfur powder (15 mg) and the spin-coated
sapphire substrate were loaded into two separate furnaces, heated at
150° and 650°C, respectively, under argon flow of 500 standard
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cubic centimeters per minute. After growth period of 30 min, furnaces
were opened and cooled down to room temperature.

Fabrication and characterization of the adjustable

synaptic phototransistor

The fabrication process of the adjustable synaptic phototransistor
began with the transfer of graphene film (~2 nm) onto Si3Nj layer
(50 nm), deposited on a Si wafer. Ti/Au electrodes (5/25 nm) were
deposited and patterned using liftoff process, and the graphene was
patterned as interdigitated source/drain electrodes with a channel

80of10

GZ0Z “TO aunC uo ABOJOUYDS | 79 B0UBIDS 1O 3IN1IISU| BaJ0 Y T8 610°80Us 105" MMM/ ST1IY LWoJ) Papeo UMOQ



SCIENCE ADVANCES | RESEARCH ARTICLE

length of 10 pm by photolithography and dry etching. The mono-
layer MoS, film was transferred onto the graphene electrodes and
patterned by photolithography and dry etching. A pV3D3 dielectric
(30 nm) was deposited using initiated chemical vapor deposition
and patterned by photolithography and dry etching. Last, Ti/Au gate
electrodes (5/25 nm) were deposited by thermal evaporation and
patterned using liftoff process.

A cross-sectional image of adjustable synaptic phototransistor
was captured using Cs corrected transmission electron microscope
(JEM-ARM200E, JEOL, Japan). The transmittance of top gate structure
was measured using an ultraviolet-visible-near-infrared spectro-
photometer (Lambda 750, PerkinElmer). Fermi level of MoS,-pV3D3
heterostructure under various V, was analyzed using Kelvin probe
force microscopy (XE 100, Park Systems, Korea). Transfer curves of
adjustable synaptic phototransistors were characterized using a
parameter analyzer (B1500A, Agilent, USA). Photocurrent measure-
ments for analyzing time-dependent photo-response were performed
using a multichannel analog-to-digital converter after converting
the photocurrent into the voltage signal with a preamplifier (SR570,
Stanford Research Systems, USA) (fig. S11). A commercial green
light-emitting diode (peak emission wavelength of 520 nm) was
used as light source, and its intensity and exposure duration were
controlled using an Arduino Uno board.

Simulation using empirical parameters of adjustable
synaptic phototransistor

To validate the feasibility of in-sensor multilevel image adjustment
for high-clarity contour extraction, simulations were conducted to
emulate the in-sensor-adjusted images using empirical parameters
derived from Vj-dependent nonlinear optoelectronic conversion of
the adjustable synaptic phototransistor. The accumulated photocur-
rents of adjustable synaptic phototransistor were measured under
varying light intensities, exposure durations, V| (fig. S8). Based on
these measurement results, a lookup table of normalized photocur-
rent values at exposure duration of 250 ms was created through inter-
polation (Fig. 3G).

The simulation process involved converting the light intensities of
high-resolution raw images into corresponding values from the lookup
table based on specific V¢, thereby generating in-sensor-adjusted
images. The V) values of excitatory and inhibitory modes were
selected according to the lighting conditions. Subsequently, contours
were extracted from the in-sensor-adjusted images, and the contour-
extracted images for both modes were merged using logic operations
to generate a high-clarity contour-extracted image. All relevant source
codes are included in the Supplementary Materials.
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