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Complex ligand adsorption on 3D atomic surfaces
of synthesized nanoparticles investigated by
machine-learning accelerated ab initio
calculation†
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Hyeonhu Bae,d Sungsu Kang,a,c Sangdeok Shim,*e Hoonkyung Lee*d and
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Nanoparticle surfaces are passivated by surface-bound ligands, and their adsorption on synthesized nano-

particles is complicated because of the intricate and low-symmetry surface structures. Thus, it is challen-

ging to precisely investigate ligand adsorption on synthesized nanoparticles. Here, we applied machine-

learning-accelerated ab initio calculation to experimentally resolved 3D atomic structures of Pt nano-

particles to analyze the complex adsorption behavior of polyvinylpyrrolidone (PVP) ligands on synthesized

nanoparticles. Different angular configurations of large-sized ligands are thoroughly investigated to

understand the adsorption behavior on various surface-exposed atoms with intrinsic low-symmetry. It is

revealed that the ligand binding energy (Eads) of the large-sized ligand shows a weak positive relationship

with the generalized coordination number CN
� �

. This is because the strong positive relationship of short-

range direct bonding (Ebind) is attenuated by the negative relationship of long-range van der Waals inter-

action (EvdW). In addition, it is demonstrated that the PVP ligands prefer to adsorb where the long-range

vdW interaction with the surrounding surface structure is maximized. Our results highlight the significant

contribution of vdW interactions and the importance of the local geometry of surface atoms to the

adsorption behavior of large-sized ligands on synthesized nanoparticle surfaces.

Introduction

Surface-bound ligands determine the structures of colloidal
nanoparticles by regulating the surface energy and growth
pathway in the synthesis. In addition, the physicochemical

properties of the synthesized nanoparticles are sensitive to the
binding type and surface distribution of the ligands.1–3 There
are different types of ligands used in the synthesis of nano-
particles, including polymers, organic molecules, inorganic
complexes, and metal ions. Among them, polymers such as
polyvinylpyrrolidone (PVP) are widely used to direct the struc-
tures of metal nanoparticles, exploiting their preferential
adsorption on different crystallographic surfaces.4–6

Several experimental methods including infrared spec-
troscopy, nuclear magnetic resonance spectroscopy, and X-ray
photoelectron spectroscopy are extensively used to investigate
the ligand-binding chemistry on the nanoparticle surface.7–10

However, they are based on spectroscopic information from
the nanoparticle ensemble and have limitations in investi-
gating ligand interactions at the single particle level.
Theoretical calculations based on quantum mechanics are
employed to understand the adsorption chemistry of ligands
with high accuracy,10–14 but are not yet readily applicable to
synthesized nanoparticles with complex surface structures and
large-sized ligand systems. The complex surfaces of syn-
thesized nanoparticles having low-symmetry surface atoms,
edges, and corners require extremely large computational
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resources. In addition, large-sized ligand systems have config-
urational degrees of freedom along the different adsorption
directions and complex binding modes including van der
Waals interaction.

Recently, several sampling methods based on machine
learning have been proposed for fast and precise computation
of adsorption energy on the surface of nanoparticles. They are
successful with small molecular adsorbates such as H, CO and
HCHO.15–17 The accuracy and efficiency exhibited by artificial
neural network (ANN) prediction for small molecules encou-
rage us to investigate the complex surface interactions of
polymer ligands used in the synthesis of nanoparticles by
using the ANN. Here, we studied ligand binding characteristics
in a synthesized nanoparticle–ligand system – Pt nanoparticles
passivated by PVP ligands – using machine-learning-acceler-
ated ab initio calculation. We applied an ANN to the realistic
3D atomic structure of the synthesized nanoparticles that we
directly analyzed from their colloidal phase with a precision of
19 pm. This enabled the efficient scanning of the binding
interactions of a large-sized ligand on intrinsically disordered
surfaces of colloidal nanoparticles without extended compu-
tation for structural relaxation. As a result, the energy, modes,
and orientations of ligand binding were thoroughly investi-
gated for 1334 surface atomic sites of 6 Pt nanoparticles with
high precision. The results reveal that the short-range direct
bonding prefers less-coordinated adsorption sites, while the
long-range van der Waals interaction of PVP becomes stronger
with more neighboring surface atoms, contributing to the
overall binding affinity of PVP on the surfaces of the syn-
thesized Pt nanoparticles. In addition, it is found that the con-
tribution from van der Waals interaction is important in the
passivation of the nanoparticle surfaces by long ligands such
as PVP polymers.

Results and discussion

The realistic 3D atomic structures of individual single-crystal-
line Pt nanoparticles were obtained by the Brownian one-par-
ticle reconstruction method,18,19 revealing that the structures
of the PVP-passivated Pt nanoparticles are nonuniformly
deviated from the bulk face-centered-cubic structure of Pt
(Fig. 1a and b). The surface structures of the synthesized Pt
nanoparticles are complicated due to the irregular shapes of
islands, resulting in a diverse distribution of the generalized
coordination number CN

� �
(Fig. 1a). The CN is an extension of

the coordination number (CN) considering the CNs of the first
nearest neighbor atoms surrounding a surface atom of inter-
est. The definition of the CN is shown in the Methods section
in the ESI.† The CN of an atom i enclosed by the first nearest
neighbor atoms j is defined by

CNi ¼
Xi

k¼1

CN kð Þ
CNmax

; ð1Þ

where CNmax and CN(k) denote the maximum CN of the first
nearest neighbor atoms and the CN of each first nearest neigh-
bor atom, respectively. According to eqn (1), the CN indicates a
distinct local geometry of a surface atom. Thus, a diverse dis-
tribution of the CN means that the synthesized nanoparticles
consist of various surface atoms with different local geome-
tries. This implies that ligands could strongly interact with
surface atoms and that the way they passivate the surface is
complicated. In addition, the various surface structures cover
much broader training space for the ANN than model nano-
particles, which improves the accuracy of prediction of ligand
adsorption behavior on Pt nanoparticles (Fig. S1†).

From the 3D atomic structures, surface atoms were defined
as ones that have a CN ≤ 9 and meet the following surface
vector criteria (Fig. 1a and S2†): each Pt cluster was clipped
from the center Pt with a cutoff radius (10 Å in Fig. S2†).16 The
surface vector was defined as a normalized vector starting
from the center of mass of neighboring Pt to center Pt. If all
angles between the center Pt to neighboring Pt vector and the
surface vector were larger than 30 degrees, the center Pt met
the criteria and is extracted as a surface atom. The Pt cluster
clipped with a cutoff of 10 Å well represents the adsorption be-
havior of PVP on the Pt surface, as shown in the benchmark
calculation (Fig. 1b and S3†). It was modeled that a PVP
monomer consists of a pyrrolidone ring, and an ethane group
could bind to the top of Pt binding sites. Density functional
theory (DFT) was corrected with the DFT-D3 method to analyze
the complex PVP adsorption behavior involving short-range
direct bonding energy (Ebind) and long-range van der Waals
interaction energy (EvdW) (Fig. 1c). Ligand binding energy
(Eads) is calculated from the summation of Ebind and EvdW
(Fig. 1c and eqn (2)).

Eads ¼ Ebind þ EvdW ð2Þ
The degree of freedom from the azimuthal binding angle

was considered. The training data for the ANN was constructed
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by extensive DFT calculations for PVP adsorption. 1386 con-
figurations representing 231 surface atoms of Pt nanoparticle
1 in Fig. 1 including azimuthally-rotated PVP orientations with

60-degree intervals for each site were initially screened. Among
them, 452 configurations which PVP could not access were
removed from the data. In addition, 32 configurations were

Fig. 1 Scheme for machine-learning-accelerated ab initio calculation. (a) Representative 3D structures of the synthesized and model nanoparticles
shown on the left and right sides, respectively. The histograms for the CN of surface atoms on both nanoparticles are presented in the middle panel.
The histograms of the synthesized and model nanoparticles are shown at the top and bottom, respectively. (b) The surface structure of the PVP
ligand protected Pt nanoparticle is clipped around 10 Å. (c) DFT-D3 calculated ligand binding energy (Eads) is used for the training set. (d) Local geo-
metric information is extracted as a set of symmetry functions from the adsorption site (the green atom, GA

i ) and the characteristic point (the blue
point, GC

i ) where the orientation of the PVP monomer, θ, is reflected. Each of the two hidden layers of the fully connected neural network consists
of 30 nodes and 60 nodes, respectively. (e) The angular adsorption energy profiles of the PVP ligand on the different types of surface structures of
particle 1 can be predicted by the ANN. The red, blue and black lines indicate Ebind, EvdW and Eads, respectively.
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also excluded, which showed direct bonding by the nitrogen
atom of PVP. This binding mode is often observed for larger
nanoparticles (∼8.4 nm), while it is negligible for smaller
nanoparticles (∼6.4 nm and smaller) where the carbonyl
binding mode is dominant.10 Note that our Pt nanoparticles
have sizes ranging from 2 nm to 3 nm and have been recon-
structed from an environment where the PVP ligands dynami-
cally interact with Pt surfaces, whose fluctuations potentially
induce the dominance of the carbonyl bonding mode. Thus,
the oxygen-binding mode of 902 configurations was eventually
utilized for the training process.

The symmetry function was used for the input feature to
predict the adsorption energy of PVP on the Pt adsorption
center as shown in Fig. 1d.20 To handle the degree of freedom
of azimuthally θ-rotated PVP, a characteristic point that rep-
resents the local geometry information from the PVP orien-
tation was assigned. The characteristic vector was defined as
the projection of the Pt adsorption center to the nitrogen atom
(the Pt–N vector in Fig. 1d) on the surface of a Pt cluster. The
characteristic point was defined as the point 2.0 Å away from
the adsorption center in the direction of the characteristic
vector. The distance between the adsorption center and the
characteristic point was determined by a 5-fold cross-validation
(Table S1†). We calculated 40 symmetry functions from the
adsorption center and characteristic point (12 for the radial
part and 28 for the angular part) and concatenated them to
make an input feature with 80 dimensions (see the Methods
section in the ESI†). The produced input feature was used by a
two-layered fully connected neural network with 4412 hidden
parameters to predict the EvdW and Ebind, respectively. By using
the ANN, the angular adsorption energy profiles of PVP on
various Pt nanoparticle surface structures can be deduced, as
shown in Fig. 1e. Since ligands can dynamically interact with
the metal nanoparticle surface by adsorption and desorption
processes,9 the θ-averaged adsorption energy is used to rep-
resent the binding affinity of PVP for Pt adsorption centers.

The dataset with a total of 902 configurations was split into
722 configurations for the training set, 90 for the validation
set, and 90 for the test set with the same coordination group
ratio as in the original dataset. We kept track of the validation
data for adjusting the learning rate with the learning rate sche-
duler to prevent overfitting. The evolution of training and vali-
dation errors during the training epoch is shown in Fig. S4.†
Training was stopped early at epoch 716, with a root mean
square error (RMSE) of 0.2169 eV for the training set and an
RMSE of 0.2250 eV for the validation set. Fig. 2a and b show
the prediction results for the test set with RMSE values of
0.0519 eV and 0.0708 eV for EvdW and Ebind, error levels com-
parable to those for the adsorption of simple adsorbates (CO
and HOCO) in a previous study.16

The surface atoms of each synthesized Pt nanoparticle 1 to
6 are displayed with a color gradient according to the θ-aver-
aged Ebind, EvdW and Eads assigned for each surface atom,
respectively (Fig. 2c and d, and Fig. S5†). For the Ebind and Eads
maps, the adsorption centers on the terrace show low binding
energy, while the others on the edges and kinks show high
binding energy. This result is consistent with previous results
obtained from an ideal Pt surface.10 However, the EvdW maps
show higher binding energies on the edges and kinks than for
the atoms on the terrace. In addition, the distributions of aver-
aged Ebind for each nanoparticle are different from those of
averaged EvdW (Fig. S6 and S7†). As shown in the histograms of
the averaged Ebind and EvdW for each nanoparticle, the energy
distributions of Ebind are close to a bimodal shape, while those
of EvdW are close to a unimodal distribution. We calculated the
bimodality index (BI) for the energy distributions, representing
the level of bimodal distribution, which shows that the distri-
butions of Ebind have a higher BI than those of EvdW for all Pt
nanoparticles (Fig. S8 and see the Methods section in the
ESI†). These findings indicate that the two types of ligand
binding modes are differently affected by the Pt surface
structures.

Fig. 2 (a and b) Artificial neural network prediction results of the test set for (a) Ebind with a root mean square error of 0.0708 eV and (b) EvdW with a
root mean square error of 0.0519 eV. (c and d) The 3D atomic structures of the six synthesized Pt nanoparticles colored based on (c) θ-averaged
Ebind and (d) θ-averaged EvdW of the PVP ligand. Each Pt nanoparticle has a diameter of 2.25, 2.41, 2.42, 2.52, 2.66, and 2.92 nm, respectively. Scale
bar, 1 nm.

Paper Nanoscale

Nanoscale This journal is © The Royal Society of Chemistry 2022

Pu
bl

is
he

d 
on

 0
6 

D
ec

em
be

r 
20

22
. D

ow
nl

oa
de

d 
by

 S
eo

ul
 N

at
io

na
l U

ni
ve

rs
ity

 o
n 

12
/2

9/
20

22
 5

:1
7:

58
 A

M
. 

View Article Online

https://doi.org/10.1039/d2nr05294f


CN and CN
� �

are descriptors associated with the chemical
activities of surface atoms. It is known that the CN and CN
show a strong linear relationship with the adsorption energies
of simple adsorbates such as O, O2, OOH, and OCH3 on high-
symmetry metal nanoparticles.21–25 However, unlike the
simple adsorbates, the correlation between the ANN-predicted
averaged PVP binding energy (Eads) and the CN of an adsorp-

tion center shows a weak positive relationship of linear corre-
lation with a Pearson correlation coefficient (r) of ∼0.656
(Fig. 3a).

Following the different trends of energy distributions in
Fig. 2c and d, averaged Ebind and EvdW show different corre-
lations with the CN (Fig. 3b and c). The correlation between
the Ebind and CN is highly linear with a positive trend, because

Fig. 3 (a) Correlation between the CN of the adsorption centers and the θ-averaged adsorption energies predicted by the ANN. (b) Correlation
between the CN of the adsorption centers and the energy contribution of direct bonding. (c) Correlation between the CN of the adsorption centers
and the energy contribution of the van der Waals interaction.

Fig. 4 (a, c and e) 3D maps of averaged adsorption energy, with yellow arrows indicating the characteristic vectors of the adsorbed PVP ligands
with the lowest EvdW. The PVP ligands are adsorbed onto (a) particle 1, (c) particle 5, and (e) particle 4. The arrows come from the (a) terraces, (c)
edges, and corners, and (e) from under the islands. (b, d and f) Examples for the optimal configurations of the PVP ligands adsorbed on the different
surface structures of particle 1 (the (left) top-view and (right) side-view are shown). The PVP ligands are adsorbed on (b) a terrace, (d) an edge, and
(f ) under the islands.
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direct bonding of PVP by the O atom of the carbonyl group is
predominantly governed by the degree of dangling bonds of
the adsorbed Pt surface atom.26 On the other hand, EvdW
shows a weak negative relationship with the CN. Since long-
range interactions with the surrounding Pt surfaces are also
involved in the pyrrolidone ring and ethane group, EvdW does
not exhibit a noticeable relationship with the CN, which is
relevant to the coordination environment of an adsorption
center. These different correlations with the CN indicate that
the weak positive relationship between the Eads and CN is
attributed to the van der Waals interactions of the large-sized
ligands, and the long-range interaction significantly contrib-
utes to the adsorption between the large-sized ligands and the
complex surfaces of the nanoparticles. Note that the Pearson
correlation coefficient of the Ebind to CN is still lower than the
one from the ideal structures reported in previous studies
because of the low-symmetry structure of the synthesized Pt
nanoparticles.22

The negative relationship of the EvdW with the CN indicates
that the pyrrolidone ring and ethane group strongly interact

with the surrounding Pt surfaces when PVP binds to the Pt
adsorption center with a high CN, such as the terrace and the
step; however, they weakly interact when the adsorption
centers have low CN values, such as the edge and the corner.
Since the long-range interaction is predominantly governed by
the degree of contact between the PVP ligand and the Pt
surface, the energy profiles along the different angular con-
figurations of PVP show that the energy deviation of EvdW is
larger than that of Ebind (Fig. S9†). Thus, the configuration of
adsorbed PVP on the Pt surfaces with the lowest value of EvdW,
meaning the most stable van der Waals interaction, is required
to investigate the relationship of the EvdW with CN. For the
adsorption directions with the lowest EvdW, the characteristic
vectors (the projection of the Pt–N vector on the Pt surface,
Fig. 1c) are shown as yellow arrows on the 3D atomic maps of
Pt nanoparticles (Fig. 4a, c, and e).

The adsorption directions on the Pt nanoparticle surfaces
with the lowest EvdW have the following tendency. First, when
the PVP ligands directly bind to the terrace atoms of islands,
they are more likely to direct toward the nearby terrace atoms

Fig. 5 (a) Top view of the exemplary adsorption sites with a similar CN but different adsorption energies. The constituent atoms included in the
10 Å cluster for the ANN prediction are colored according to depth. The coordination numbers of the adsorption centers and their nearest neighbors
are indicated. (b) Side view of the exemplary adsorption centers. The auxiliary lines serve as a guide for comparing the local geometry of each
adsorption site. The θ-averaged adsorption energies of each adsorption center are presented. (c) Angular adsorption energy profiles on each adsorp-
tion center.
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(Fig. 4a, b, and Fig. S10†). Second, the PVP ligands binding on
the edge and corner atoms prefer to locate toward the steps
nearby (Fig. 4c, d, and Fig. S11†). Third, the PVP ligands
binding on the adsorption centers under the islands tend to
adsorb toward the steps nearby (Fig. 4e, f, and Fig. S12†).
These results indicate that a way to maximize the degree of
contact of PVP ligands depends on the type of adsorption
center, which leads to a weak negative relationship between
the EvdW and CN. In addition, when comparing the adsorption
direction of each PVP ligand with the lowest Ebind and EvdW
and the adsorption direction with the lowest Eads, the config-
urational similarity with the lowest EvdW is higher than that of
the lowest Ebind (Fig. S13†). This indicates that the PVP ligands
prefer to adsorb where the long-range vdW interaction with
the surrounding surface structure is maximized. In other
words, the surrounding surface geometry of an adsorption
center is important in determining the most stable configur-
ation of the binding PVP ligands on the low-symmetry surface
structure of Pt nanoparticles.

The PVP adsorption behavior on several adsorption centers
with the same CN and similar CN was carefully examined to
represent the influence of the surrounding surface geometry
on the adsorption energy. Two adsorption centers for each par-
ticle with the same CN are colored in blue and orange (Fig. 5a
and b). Although each pair shows similar CN values, the aver-
aged adsorption energy of each adsorption center differs by
more than 0.1 eV (Fig. 5b). This is because the local surface
geometry surrounding the adsorption center is different, as
shown in the top view and side view (Fig. 5a and b). In detail,
the local surface geometry around the higher binding energy
site shows a flat surface, while the lower binding energy site is
surrounded by kinks and edges. This implies that the flat pyr-
rolidone ring of PVP favors neighboring flat surfaces with high
van der Waals interaction. The binding energy for the sites
even with the same CN also shows difference in its angular
profile (Fig. 5c). The large difference in the adsorption ener-
gies at a specific configurational angle is also shown in the
results of the DFT calculation (Table S2†). The results show
that the adsorption energy of PVP ligands is significantly
affected by each surrounding geometry.

The observation we found is also consistent with previous
reports where PVP ligand adsorption on ideal surfaces such as
(100) and (111) facets was studied.10–14 For example, Saidi
et al. reported that the vdW interaction is stronger on Ag(111)
than on Ag(100) because of a higher local density of surface
atoms.11,14 In our work, realistic nanoparticle surfaces com-
posed of various low-symmetry surfaces are considered.
Interestingly, following the negative correlation of the EvdW
with the CN in Fig. 3, surface atoms in Pt(111) CN ¼ 7:5

� �

show higher EvdW interaction than the ones in Pt(100)
CN ¼ 6:67
� �

, consistent with the results from the ideal
surfaces.10–14 Likewise, our machine-learning-accelerated
ab initio calculation can address various kinds of low-sym-
metry adsorption centers with additional rotation degrees of
freedom of PVP ligands. Note that the symmetry functions we
exploited in the ANN can also be applied to the machine learn-

ing potential which is powerful to optimize the configuration
and calculate the energies of various systems. We adopted an
ANN to consider the dynamic interaction of PVP on low-sym-
metry surfaces, which can analyze adsorption behavior at
different angular configurations regardless of the large depen-
dence on the initial configuration of coordinate optimization
in DFT and machine learning potential. With more careful
consideration of the training, prediction process, and broader
dataset, we expect that sophisticated machine learning poten-
tial will facilitate larger scale simulations including the effects
of solvents and polymer chains.

Conclusions

In summary, we calculated the adsorption energy of PVP
ligands on the synthesized Pt nanoparticles and analyzed their
adsorption behavior through machine-learning-accelerated
ab initio calculation. The use of experimentally resolved atomic
structures of nanoparticles provides sufficiently diverse
sampling data for learning the adsorption tendency on realis-
tic nanoparticle surfaces and enables accurate prediction of
surface chemistry. We revealed that the negative relationship
of the EvdW with the CN attenuates the strong positive relation-
ship of Ebind, which leads to a weak positive relationship of the
Eads of the PVP ligand. In addition, we showed that the PVP
ligands prefer to adsorb where the long-range vdW interaction
with the surrounding surface structure is maximized. Our
results emphasize the significant contribution of vdW inter-
actions and the importance of the local geometry of surface
atoms to the adsorption behavior of large-sized ligands on low-
symmetry surfaces. The introduced method utilizing machine-
learning-accelerated ab initio calculation and experimentally
analyzed surface atomic structures suggests a new low-cost
and high-precision computational approach for studying
surface chemistry and catalytic activity of nanoparticles.
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