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M AT E R I A L S  S C I E N C E

Self- supervised machine learning framework for 
high- throughput electron microscopy
Joodeok Kim1,2†, Jinho Rhee1,2†, Sungsu Kang1,2, Mingyu Jung3, Jihoon Kim1,2, Miji Jeon3,  
Junsun Park3, Jimin Ham4, Byung Hyo Kim5, Won Chul Lee4*,  
Soung- Hun Roh3*, Jungwon Park1,2,6,7,8*

Transmission electron microscopy (TEM) is a crucial analysis method in materials science and structural biology, as 
it offers a high spatiotemporal resolution for structural characterization and reveals structure- property relation-
ships and structural dynamics at atomic and molecular levels. Despite technical advancements in EM, the nature 
of the electron beam makes the EM imaging inherently detrimental to materials even in low- dose applications. We 
introduce SHINE, the Self- supervised High- throughput Image denoising Neural network for Electron microscopy, 
accelerating minimally invasive low- dose EM of diverse material systems. SHINE uses only a single raw image da-
taset with intrinsic noise, which makes it suitable for limited- size datasets and eliminates the need for expensive 
ground- truth training datasets. We quantitatively demonstrate that SHINE overcomes the information limit in the 
current high- resolution TEM, in situ liquid phase TEM, time- series scanning TEM, and cryo- TEM, facilitating unam-
biguous high- throughput structure analysis across a broad spectrum of materials.

INTRODUCTION
Transmission electron microscopy (TEM) is a key analysis method in 
materials science and structural biology. It offers high spatiotemporal 
resolution in structural characterization, which helps uncover the 
structure- property relationship and structural dynamics at the atomic 
and molecular levels. With a resolution approaching the scale of indi-
vidual atoms, structures of materials can be understood at a level 
where constituent atoms are thoroughly located. For example, high- 
resolution TEM and scanning TEM (STEM) can be used to locate 
catalytic single atoms on support materials (1, 2). Further, (S)TEM can 
be applied to the structure analysis of two- dimensional (2D) materials 
(3–6) and thin- film semiconductors (7–10) to realize atomic- level 
precision. Beyond the conventional 2D microscopic analysis, serial 
imaging based on (S)TEM combined with computed structure recon-
struction allows characterizing material structures in three dimen-
sions. The positions of constituent atoms in single nanoparticles, 
exposed to vacuum or immersed in solution, can now be determined 
by electron tomography (11, 12) and Brownian one- particle recon-
struction (13, 14). The conformational degeneracy of membrane pro-
teins can indeed be addressed without crystallization, which enables a 
profound understanding of protein dynamics (15, 16) and drug- target 
interactions (17, 18). Cryo–electron tomography (cryo- ET) with com-
putational reconstruction is widely exploited for tomography wherein 

3D structures and positions of individual protein molecules are re-
solved inside a single cell (11, 18–20).

For further pushing the information limit that can be gained by 
EM, recent efforts have focused on developing microscopes with en-
hanced beam control and detector efficiency. The incorporation of 
spherical (Cs) and chromatic (Cc) aberration correctors, which can 
achieve Cs and Cc less than 0.01 mm, has helped improve the coher-
ence of the electron beam (21). Moreover, the implementation of a 
direct electron detector (DED) has replaced conventional charge- 
coupled devices (CCDs), elevating the quantum efficiency of elec-
tron detection to nearly 0.9 with less than 10% coincident loss. This 
enables nonlethal low- dose imaging of beam- sensitive materials 
through electron counting mode (22–24). Despite these advance-
ments, imaging using EM suffers from intrinsic limitations caused 
by the inherent incoherence in the irradiating electron beam and the 
process of generating microscopic images as electrons pass through 
the camera and are detected. Low- dose imaging produces Poisson 
noise from the limited number of electrons that are incident to the 
detector. In addition, pixelated detectors limit pixel size, coincident 
loss, and correction of sample drift that occurs during acquisition 
time, which results in blur and noise in the acquired image. Discard-
ing such inherent information- limiting sources is a critical require-
ment for overcoming the current information limit of (S)TEM and 
accomplishing damage- free EM imaging. Given the state- of- the- art 
instrumental development of the modern EM, such a goal can be 
achieved by processing image data to deconvolute object- oriented 
information from intrinsic noise using a software- based approach.

Thus far, diverse denoising methods have been developed to ad-
dress both instrumental and physical noise sources embedded in TEM 
images and to isolate meaningful information (25, 26). Traditional de-
noising techniques such as Gaussian filtering, bandpass filtering, Wie-
ner filtering, and block- matching and 3D filtering (BM3D) denoiser 
often compromise on the details and result in a loss of information in 
the images (27). More recently, the use of neural network–based tech-
niques for image denoising has shown a promising potential in pro-
ducing valuable information even when images are corrupted by noise 
(26, 28, 29). However, most of these developments use training 
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processes that require noise- free reference images, which are difficult 
to obtain in practice because of the reduced signal from low dose rates 
and sample drift that occurs during image acquisition. Owing to the 
case- dependent noise characteristics of training datasets, it is also im-
practically difficult to acquire a substantial number of reference images 
for each distinct imaging condition for the training network. Therefore, 
a method that can denoise TEM images in the absence of reference im-
ages and make the whole process self- consistent from raw data acquisi-
tion to the extraction of information is highly desired.

In this paper, we introduce SHINE (Self- supervised High-
throughput Image denoising Neural network for Electron micros-
copy), a self- supervised denoising method that requires only a single 
raw image dataset with intrinsic noise, making it suitable for limited- 
size datasets and removing the extra effort to collect training data. 
Our approach aims to remove the noise patterns that occur in real- 
world TEM observations, such as variations in magnification, signal 
dispersion across pixel boundaries, and sample drift during imag-
ing. We address the issue of variance in noise patterns across differ-
ent TEM observations by calculating the correlation of noisy images 
and exploiting the calculated noise pattern for denoising. We evalu-
ated the network through simulated datasets, and the results con-
firm its superior performance in terms of peak signal- to- noise ratio 
(PSNR) and structural similarity index (SSIM) compared to that 
of previous self- supervised denoising techniques. Subsequently, 
we applied SHINE to various types of advanced time- series TEM 
observations, such as liquid cell in situ TEM and time- series STEM, 
and the results indicate that it can generate high- quality images 
with improved contrast. Further, SHINE is applied to cryo- ET of a 
whole cell, where the quality of the tilt- series micrographs and 
tomographic reconstruction of the cell are enhanced. A series of 
demonstrations confirms that SHINE eliminates the need for ex-
pensive ground- truth training datasets, enabling high- throughput 
EM, and has a great potential for accelerating damage- free low- 
dose (S)TEM.

RESULTS
Blind- spot video denoiser for enhancing the quality of 
TEM images
We aim to develop a denoising approach that can be used over a 
wide range of in situ EM including liquid cell in situ TEM, time- 
series STEM, and cryo- ET (Fig. 1A). Existing denoising techniques 
based on neural networks focused on creating a denoising network 
for a variety of images (26, 28–30). In most of these techniques, a 
large dataset containing both clean and noisy images is required to 
train the denoising network for handling various forms of noise. 
Consequently, the primary difficulty in designing a real- world im-
age denoising model is the associated high cost and challenge in-
volved in acquiring a noisy reference image dataset for training. This 
problem becomes more serious in in situ TEM. In in situ TEM ob-
servation, obtaining a clean, noise- free image for training is difficult 
because of the limited dose rates and reactions of objects with inci-
dent electrons.

Understanding the dependency between the noise patterns of 
nearby pixels in each image can help improve the performance of a 
neural network used for denoising. When using a CCD or DED in 
the linear acquisition mode, the received electron signal has a dif-
fusive distribution, forming a signal that is larger than the physical 
size of the sensor pixels. Each electron signal not only affects the 

pixel that receives the incident electron but also affects nearby pix-
els, introducing the dependency of noise statistics between these 
pixels. In addition, in STEM imaging, raster scanning and sample 
drift can perturb noise- pixel dependency generated during imaging 
(Fig. 1A).

We design our neural network to reflect the basic principles of 
how incoming electrons are sensed by the detector to generate (S)
TEM images [see Fig. 1 (B and C), Materials and Methods, and fig. 
S1]. In addition, it does not require clean images for training, but 
rather uses raw images, which have intrinsic noise for both training 
and denoising. A blind- spot network is adopted for realizing a self- 
supervised denoising network through dilated convolution, as dem-
onstrated in Fig. 1C (31). Although the blind- spot denoiser was 
originally developed for single- image denoising with known noise 
statistics, they are typically unknown in most in situ TEM experi-
ments (32). To deal with time- series TEM images, we use L2 loss, or 
mean squared error (MSE) loss, during neural network training and 
add temporal information from four nearby frames to the network 
inputs (see Fig. 1B and Materials and Methods). To account for the 
correlation between neighboring pixels, dependent on the choice of 
imaging mode and condition, we estimate the blind- spot size for 
images with unknown noise statistics by calculating the correlation 
of raw images (Materials and Methods). SHINE with the optimized 
size of blind spot for different imaging is referred with respect to the 
size of the blind spot such as 1 × 1, 3 × 3, and 5 × 5. To consider the 
realistic image detection process used for breaking the correlation 
between noise and pixels, we create a larger blind- spot version by 
altering the dilation of the convolutions. For example, the network 
with a blind- spot size of 3  ×  3 cannot infer the exact pixel value 
along with the surrounding eight pixels, causing it to remove the 
nine- pixel level structured noise (referred to as the 3 × 3 blind spot; 
Fig. 1C). In every training process, we generate a unique denoising 
model for each dataset using the same dataset for both training and 
inference (see Fig. 1C and Materials and Methods). All training and 
validation losses are shown in fig. S2.

Validation of the denoising framework based on the 
simulated dataset
We generated simulated TEM datasets for two types of liquid- phase 
TEM (LPTEM), i.e., silicon nitride and graphene liquid cell TEM, to 
evaluate the effectiveness of our denoising technique. We created 
noisy in situ TEM time- series images that represent the growth of Au 
nanoparticles, showing Brownian motion, in a silicon nitride liquid 
cell using the LPTEMsimulator (Fig. 1D, top, and Materials and 
Methods) (25). We then calculated the 2D spatial correlation of noisy 
simulation to estimate the unknown noise statistics of raw datasets 
(Materials and Methods). The resulting 2D heatmap of noise statis-
tics indicates that the noise in the noisy simulation exhibits a high 
correlation within a four- pixel distance in each direction (Fig. 1D, 
bottom). This suggests that, in this dataset, noise would affect nearby 
9 × 9 pixels, implying that using a 9 × 9 blind spot would yield the 
optimal denoising. Denoising simulated images allowed us to com-
pare the results from SHINE (including 1 × 1, 3 × 3, and 9 × 9 blind- 
spot version) with the ground- truth images and the ones obtained 
from several other denoising methods, including the conventional 
BM3D denoiser (27), deep learning–based self- supervised single im-
age denoising method Noise2Void (N2V) (32), deep learning–based 
self- supervised video denoiser (UDVD) (33), and modified UDVD 
incorporating statistics of noise (UDVD*). Visually, our 9  ×  9 
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Fig. 1. Structure of SHINE and validation with the simulated TEM datasets. (A) Schematic of various teM- based observations. (B) Schematic of a single- data video 
denoising procedure used throughout this work. Shine contains a blind spot and cannot see the exact pixel value of noisy images for interference. (C) Simple diagram of 
generating a blind spot in the network using a flexible blind- spot denoising network with dilated convolution. the red- highlighted box shows a blind spot area that can-
not be seen by the network. (D) clean teM simulation of Au nanoparticles in the silicon nitride liquid cell (top). 2d spatial correlation heatmap showing noise statistics of 
a noise- simulated teM image of Au nanoparticles (bottom). lcteM, liquid cell teM. (E) comparison of denoising performance using various methods. (F and G) com-
parison of image quality metrics with PSnR and SSiM between the denoised results and the original image. (H) clean teM simulation of Pt nanoparticle in the graphene 
liquid cell (top). 2d spatial correlation heatmap showing noise statistics of a noise- simulated teM image of Pt nanoparticle (bottom). (I) comparison of the denoising 
performance using various methods. (J and K) comparison of image quality metrics with PSnR and SSiM between denoised results and the original image. (L) clean teM 
simulation of Pt nanoparticle on ceria support (top). 2d spatial correlation heatmap showing noise statistics of a noise- simulated teM image of Pt nanoparticle (bottom). 
(M) comparison of the denoising performance using various methods. (N and O) comparison of image quality metrics with PSnR and SSiM between the denoised results 
and the original image.
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blind- spot denoiser outperforms all other denoising methods (Fig. 
1E and movie S1), whereas the N2V, UDVD, and 1 × 1 blind- spot 
denoisers do not show substantial visual improvement because of the 
overfitting of noise. This confirms the superiority of SHINE over pre-
viously reported methods. Further, we also conducted a quantitative 
evaluation of image quality metrics based on PSNR and SSIM. The 
results showed that our 9  ×  9 blind- spot network provided better 
PSNR and SSIM values than those of the other methods, with an al-
most 20- dB improvement in PSNR and a 0.6 difference in SSIM val-
ue (Fig. 1, F and G). These results confirm the successful restoration 
of the original image, especially for images with light noise, where 
the conventional BM3D denoiser and modified UDVD* performed 
better than the N2V, UDVD, and 1 × 1 blind- spot denoisers, high-
lighting the importance of incorporating a large blind spot to avoid 
noise overfitting.

In another validation process, we used a simulation to model the 
Brownian movement of a Pt nanoparticle, including both rotational 
and transitional motions, within a graphene liquid cell (Fig. 1H and 
movie S2). With a dose rate of 50 e−/Å2 and a pixel size of 0.217 Å 
per pixel, we generated TEM simulations using clTEM (34), as de-
scribed in Materials and Methods. After imaging, we estimated the 
blind- spot size for noisy simulation from a 2D correlation heatmap 
and chose to use a 3 × 3 blind spot (Fig. 1H). We demonstrated that 
SHINE was suitable for highly noisy images, surpassing the N2V 
and UDVD methods in terms of PSNR and SSIM. Our network re-
covers atomic columns previously affected by noise, which results in 
an image almost indistinguishable from the ground truth. In addi-
tion, our 3  ×  3 blind- spot network outperforms other methods, 
achieving an almost 10- dB enhancement in the PSNR and a 0.4 en-
hancement in SSIM value (Fig. 1, J and K).

Further, this pattern is reflected in the simulated image of Pt 
nanoparticle on ceria support, wherein our framework successfully 
restores the shape of atoms in the noisy simulation (Fig. 1, L to O, 
and movie S3). Our denoising approach can achieve better visual 
quality and high- quality metric values, which confirms that the size 
of the blind spot is key to producing a high- quality image using the 
self- supervised denoising framework. SHINE provides significant 
enhancements in both visual quality and SNRs, performing well on 
simulated datasets. Our neural network–based denoising approach 
showed notable improvements in both PSNR and SSIM in the case 
of Pt nanoparticle on ceria support, where it achieved a 20- dB im-
provement in PSNR and a 0.9 improvement in SSIM value.

Applications of blind- spot video denoiser for in situ (S)TEM
We applied SHINE for multiple in situ TEM observations of Au 
nanoparticles dissolving in a graphene liquid cell (Fig. 2A, fig. S3, 
and movies S4 and S5). For real dataset applications, we adhered to 
the same procedure as for simulated datasets. We first estimated 
noise statistics of a real noisy image, indicating a blind- spot size of 
3× 3 (Fig. 2B). We then trained the network using only 100 frames 
from the full dataset and compared the results with networks trained 
and inferred using N2V, the 1 × 1 blind spot, and the 3 × 3 blind 
spot to demonstrate the capability of our framework with a limited 
data size (Fig. 2C). Our 3 × 3 blind- spot network outperforms other 
denoising methods by removing noise effectively, which results in 
an image with significantly enhanced visual quality. The denoised 
image exhibits high contrast and is practically noise- free, containing 
similar information to the average of five frames (Fig. 2C). Our ap-
proach enhances the intensities of the lattice peaks in the fast 

Fourier transform (FFT) image, unlike the denoised images pro-
duced by N2V and 1  ×  1 blind- spot methods. It exhibits artifact 
rings at the single- pixel level, which affect the visual quality and fre-
quency peaks of the nanoparticles. However, an image denoised by 
the 3 × 3 blind spot shows only aliasing patterns in the FFT image 
(fig. S4). The boundary and lattice structures of nanoparticles are 
visible in the denoised image, which enables the tracking of the 
nanoparticle size and crystal structure changes under a low dose 
with fast scan rate imaging (Fig. 2D and fig. S4). The improved con-
trast in both normal and FFT images allows the successful measure-
ment of the particle size and angular orientation of (111) lattice 
peaks in every single frame, as captured in Fig. 2E. Nanoparticles 
rapidly change in size and angle after 175 ms, which indicates a step-
wise process of dissolution. The denoising framework enhances the 
clarity and reduces noise in the output, potentially boosting the 
temporal resolution of the analysis. Our denoised images show a 
significant improvement in SNR, with an almost 15- dB increase 
compared to that of the original TEM images, as assessed by our 
SNR analysis (Materials and Methods).

We conducted an in situ experiment using an electrochemical 
silicon nitride liquid cell to observe the hydrogen evolution reaction 
(HER) from MoS2 monolayer catalysts (Fig. 3A, Materials and Meth-
ods, and movie S6) (35). We followed a similar training approach and 
trained our network with N2V, the 1 × 1 blind spot, and the 3 × 3 
blind spot, the latter of which is determined from the calculated noise 
pattern, to denoise noisy time- series images obtained from in situ 
TEM imaging (Fig. 3, B and C, and Materials and Methods). Our 
denoising approach consistently outperforms previous techniques, 
achieving improved contrast and better performance with the real 
dataset. The enhanced contrast facilitates the differentiation between 
the regions of generating hydrogen bubbles and MoS2 and the identi-
fication of bubbles located beneath the MoS2 layers. This improved 
clarity allows us to detect morphological changes without averaging 
multiple frames (Fig. 3D). To demonstrate this contrast difference, 
we conducted line intensity analysis in areas 1 and 2 in Fig. 3C, cor-
responding to a region including carbon, bubbles, and MoS2 films 
and a region including MoS2 films and silicon nitride (Fig. 3, E and 
F). The 3 × 3 blind- spot denoised images show significant improve-
ments that can resolve differences in MoS2 films, bubbles, and silicon 
nitride, whereas the other images cannot.

We evaluate the performance of the denoising network for image 
datasets collected from a carbon film liquid cell TEM wherein the 
contrast is affected heavily by noise from the thick window material 
and liquid molecules (Fig. 4A and movie S7) (36). We encapsulated 
a Pd(acac)2 precursor into the carbon film liquid cell and used an 
electron beam to initiate nanoparticle nucleation and growth during 
in situ TEM imaging. To train and infer the clean image, we used a 
dataset of only 100 frames subsampled with the same frame interval. 
Similar to the previous experiment, we first computed spatial cor-
relation to determine the blind- spot size (3 × 3), and then we used 
N2V, the 1 × 1 blind spot, and the 3 × 3 blind spot to train the net-
work (Fig. 4, B and C). Our denoising network produced improved 
visual quality and enhanced the contrast of Pd nanoparticles in 
TEM images. We applied a simple binarization filter for separating 
nanoparticles from the background, to validate whether particle- 
oriented information can be separated. The 3  ×  3 blind- spot de-
noised image shows an almost perfect separation of the nanoparticles 
and the background, which makes it easier to analyze nanoparticle 
growth. This clear separation is evident in the histogram. The noisy, 
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N2V, and 1 ×  1 blind- spot denoised images displayed a Gaussian 
distribution in the intensity histogram, which leads to the difficulty 
in separating the particles and background (Fig. 4D). However, the 
3 × 3 blind- spot denoised image exhibits two peaks that can be de-
convoluted into the nanoparticles and the background of the carbon 
film and encapsulated liquid. This binarized image enables the facile 
measurements of particle size, SD, and number of nanoparticles in 
the field of view (Fig. 4, E to G).

The method presented in this study can also be applied to se-
quential STEM observations. For example, we captured the time- 
series STEM images of Pt atoms deposited on a MoS2 film with two 
different pixel dwell times, i.e., 5 and 10 μs (Fig. 5A, Materials and 
Methods, and movies S8 and S9). The asymmetric 2D noise heat-
map, caused by specimen drift, indicates the use of a 5 × 5 blind spot 
for the denoising network to fully address the noise pattern (Fig. 

5B). We successfully trained SHINE with only 20 frames. The 5 × 5 
denoised image demonstrated superior quality compared to that of 
the 3 × 3 denoised image (Fig. 5C) because the drift influenced both 
the immediate neighboring pixels and the second nearest pixels, al-
though the two versions of the denoised image show the temporal 
movement of Pt atoms over the MoS2 film over time and the detailed 
atomic positions in the film. Despite the short illumination time, it 
enables the automatic selection of atomic positions in all frames and 
tracking time- resolved movements of Pt atoms through ImageJ’s au-
tomatic atomic selection with local maxima picking (Fig. 5, D and E, 
and Materials and Methods) (37).

Application of blind- spot video denoiser for cryo- ET
We prepared a cryo–electron tomogram dataset using whole- cell to-
mography techniques (Fig. 6A, Materials and Methods, and fig. S5). 

Fig. 2. Denoising of nanoparticle dynamics in liquid cell TEM using SHINE. (A) Schematic of the graphene liquid cell with the encapsulated Au nanoparticles. (B) 2d 
spatial correlation heatmap showing noise statistics of a noisy teM image of Au nanoparticles in graphene liquid cell. (C) comparison of visual quality between multiple 
denoising methods (top). Magnified atomic column of a nanoparticle (bottom) and FFt images of results (insets). (D) time- series images of Au nanoparticle dissolution in 
the graphene liquid cell. the yellow line shows the measured projected area of the Au nanoparticles. Red markers show the angular orientation of the (111) lattice of the 
nanoparticle. (E) time- dependent change of the nanoparticle size and orientation, which shows that the nanoparticle is rotating and dissolving in the liquid medium.
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We first estimated the statistics of noise and decided to use the 5 × 5 
blind spot for denoising with SHINE (Fig. 6B). For comparison, we 
denoised the same dataset using Topaz- Denoise AI (38). We observe 
a substantial enhancement in both the quantitative and the percep-
tual quality of the tilt- series micrographs after denoising with our 
network (Fig. 6, C and D, and movie S10). It was possible to detect 
detailed features of the cell membrane and granular structures within 

the cell from only a single fraction of our denoised images, whereas 
Topaz- Denoise AI also improves the contrast but preserves fewer 
features (Fig. 6D).

Then, we conducted a tomographic reconstruction of the cell for 
comparison, as described in Materials and Methods. Our blind- spot 
denoiser enhanced the visibility of key structural features that in-
clude the cell membrane and inner structures of the mitochondria 

Fig. 3. Denoising of electrochemical reaction in liquid cell TEM using SHINE. (A) Schematic of hydrogen evolution reaction (heR) in the liquid cell teM. (B) 2d spatial 
correlation heatmap showing noise statistics of a noisy teM image of heR on MoS2 film. (C) comparison of visual quality between multiple denoising results. (D) time- 
series images of bubble underneath the MoS2 film. (E) line intensity profile of area 1, the area including the carbon, bubble, and MoS2 film. (F) line intensity profile of area 
2, the area including the MoS2 film and silicon nitride window.

Fig. 4. Improving image quality for time- series TEM using SHINE. (A) Schematic of the preparation of the carbon film liquid cell with encapsulated Pd nanoparticles. 
(B) 2d spatial correlation heatmap showing noise statistics of a noisy teM image of Pd nanoparticles in carbon film liquid cell. (C) comparison of the visual result of the 
original and denoised images. example of input noisy image, denoised image using n2v, our 1 × 1, and 3 × 3 blind- spot method, and five frame–averaged image (top). 
Simple binarization- filtered image to separate particle and background (bottom). (D) histogram of the intensity values of the image in (c). (E) time- dependent average 
size of the nanoparticles. (F) time- dependent Sd changes in the nanoparticles in images. (G) the number of nanoparticles in the field of view.
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(Fig. 6E and movie S11). In addition, our tomogram from the first 
fraction image also displays improved contrast compared with the 
tomogram from the first fraction image denoised with Topaz or raw 
tomogram using full- dose imaging, demonstrating promising re-
sults for low- dose reconstruction.

Furthermore, we additionally denoised low- dose datasets with dif-
ferent characteristics to verify the network performance on damage- 
free imaging. We prepared another cryo–electron tomogram dataset 
with an electron dose of 3 e−/Å2 for each fractionated frame (details 
described in section S1). Denoised results demonstrate that our net-
work performs effectively for low- dose imaging down to 0.1 e−/Å2 
(fig. S6).

DISCUSSION
We introduce a high- throughput EM framework that uses a neural 
network with flexible blind- spot architecture. SHINE overcomes 
the negative effects of signal perturbations that occur commonly 
during real signal acquisition by nearby pixels. We demonstrated 
the efficacy of SHINE using both real- world and simulated TEM 
datasets and compared it to previous denoising methods using vi-
sual quality and image quality metrics. We achieved significant 
improvements in image quality by adjusting the size of the blind 
spot to match the noise characteristics of the images. Our quanti-
tative analysis showed that SHINE outperformed the N2V and 
UDVD methods in PSNR and SSIM metrics. These results indicate 
that SHINE can be applied to different in situ TEM approaches, 
including liquid cell TEM, time- series STEM, and cryo- ET with 
minimal training data. SHINE enhances the accuracy of atomic 
column identification and nanoparticle size measurement in high- 
resolution TEM images while also restoring contrast affected by 
noise. In the field of STEM imaging, the technique substantially 

augments image quality, allowing for meticulous atomic- level 
characterization even with brief pixel dwell times. We observed 
that segmented images at substantially lower dose rates compared 
to the original still adequately discern detailed features of tomo-
grams in whole- cell tomography. The improvements achieved us-
ing this approach provide increased confidence in measurements 
taken at low dose rates and have the potential to enhance temporal 
and spatial resolutions.

MATERIALS AND METHODS
Model architectures
In this study, we used our network with dilated convolutions based 
on an efficient blind- spot network (fig. S1) (31). The architecture 
was designed to expect input map features with five dimensions, 
which includes the exact input frame and four nearby frames. The 
exact input frame was processed with a 1 × 1 convolutional layer 
and 48 channels, whereas the nearby frames were treated with 3 × 3 
convolutional layers and 16 channels. Our model included eight lay-
ers of convolution blocks, each containing two 3 × 3 convolutional 
layers. After each convolution block, the collected features were pro-
cessed with 3  ×  3 dilated convolutional layers for preserving the 
blind- spot constraint of the network and collected as the out-
put feature.

Blind- spot self- supervised denoising framework and 
loss function
We implemented a mapping from x (time- series image) to x′ (de-
noised image) in training our blind- spot CNN (convolutional neu-
ral network). In SHINE, we implemented the blind- spot receptive 
field for image denoising (32) while allowing the blind- spot network 
to have flexible blind- spot size, estimated from noise statistics in the 

Fig. 5. Improving image quality for time- series STEM using SHINE. (A) Schematic of the in situ SteM observation of MoS2. (B) 2d spatial correlation heatmap showing 
noise statistics of a noisy SteM image of Pt single atom over MoS2 film. (C) comparison of the original visual result and denoised results of multiple methods (spot filter, 
3 × 3 blind spot, and 5 × 5 blind spot). (D) comparison of the atomic picking result of the original and denoised image using local maxima. (E) time- dependent position 
change of Pt atoms, which shows that the Pt atoms move over the MoS2 film.
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noisy image. For a single pixel i in the input of each prediction x, we 
made a blind spot by excluding the center pixel i and its nearby pix-
els in the receptive field xRF(i) of our network to account for the noise 
patterns occurring in real- world TEM observations. Therefore, we 
can define our blind- spot CNN as the function

where θ denotes the parameters of blind- spot CNN we want to train.
In our training scheme, we train a blind- spot network by mini-

mizing the same empirical risk as in N2V

x
j

i
 is used as the target and the input for the network; the blind- 

spot network effectively erases the information of the original pixel, 
which prevents the network from learning the identity. For TEM 

observations, we use the L2 loss function to minimize the difference 
between the original and generated images

Noise statistics estimation and blind- spot size determination
Knowing the noise statistics of the image is important because we 
can enhance the prediction quality of the blind- spot network by se-
lecting a blind- spot size that matches the influence of the noise on 
nearby pixels. However, the statistics of noise generated through im-
aging are unknown, and the noise in different images cannot be re-
garded as identical. For each dataset, therefore, we estimated the 
noise statistics by calculating the 2D correlation heatmap between 
two raw images to determine the blind- spot size before denoising 
the images. Correlation of two image tensors, x andy, was calculated 
using the equation (39)
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Fig. 6. Application of SHINE for cryo- ET. (A) Schematic of the cryo- et tilt- series collection of the cell. (B) 2d spatial correlation heatmap showing noise statistics of a noisy 
cryo- et tilt- series image of the cell. (C) comparison of image quality metrics with SnR between denoised results and the original image. (D) 0°- tilt micrograph of the cryo- 
et tilt- series image before denoising (raw), after denoising with topaz- denoise Ai (topaz), and with Shine (ours). (E) comparison of tomogram reconstruction results of 
the original and denoised images with a single fraction and full dose rate. Shine reveals the detailed cell membrane and inner cell structure by reducing background noise.
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where the angle brackets indicate averaging.
Before computing the 2D heatmap of correlation, we first select-

ed a single raw image from the dataset and standardized the image 
tensor for further calculation. To understand how noise is spatially 
correlated, we shifted the image tensor by one pixel at a time in both 
the x and y directions. We then calculated the correlation between 
the original and the shifted tensor to create the 2D spatial correla-
tion heatmap, which indicates how noise affects the neighbor-
ing pixels.

In addition, to validate our fundamental assumption that noise is 
spatially correlated across the image, we divided noisy images from 
different imaging modes in real- world TEM observations into 16 
subsections. We then compared the estimated noise statistics of these 
subregions with the noise correlation of the whole frame used for 
blind- spot size determination (see section S2 and fig. S7). Homoge-
neous noise correlation across each image demonstrated that the 
noise generated during the TEM imaging is uniformly spatially cor-
related. This result also supports our determination of the blind- spot 
size based on the spatial correlation of noise in the entire image, as 
the noise shows a nearly invariable correlation throughout the image.

Ablation study on the number of input frames for denoising
In this study, we took five frames as an input for all datasets, using 
various blind- spot sizes determined by the noise statistics of each 
dataset. By incorporating adjacent frames to estimate the output 
pixel in the blind- spot network, we accounted for spatial- temporal 
neighborhoods to improve prediction accuracy. Previous video de-
noising networks have also demonstrated improved performance 
when incorporating temporal information from neighboring 
frames, suggesting the use of five input frames (33, 40). To examine 
the effect of the number of input frames in our network, we con-
ducted experiments using different numbers of input frames for de-
noising simulated datasets (fig. S8).

PSNR and SSIM of the denoised dataset in fig. S8 (A and B) with 
five input frames exhibit the most improvement, whereas PSNR and 
SSIM values for the denoised datasets in fig. S8 (C and D) reveal that 
using three or more input frames, thereby including temporal infor-
mation, yields better performance than using a single frame, which 
is consistent with previous studies. However, no considerable im-
provement was observed for denoised datasets in fig. S8 (E and F). 
These results demonstrate that although the performance of the net-
work increases when using the temporal information, the optimal 
number for input frames may vary depending on the datasets. In 
addition, the decrease in training efficiency caused by too many in-
put frames must be taken into consideration. Therefore, with the 
consideration of performance and training efficiency, we used five 
input frames for denoising our datasets.

Training details
We used the noisy training dataset as a testing dataset without any 
preprocessing for evaluating the denoising framework. During 
training, we extract a randomly cropped image with 256 × 256 pix-
els in every frame to prevent the network from fully remembering 
noise patterns. Furthermore, we used data augmentation while 

training, and we randomly rotated each image by 90° and mirrored 
it vertically and horizontally. We use different models trained with 
each dataset for denoising the datasets.

We used a batch size of 16 for our blind- spot network training 
with an RAdam (41) optimizer with a learning rate of 0.001. We 
used a warm- up and cosine annealing learning rate scheduler and 
adjusted the number of epochs depending on the training dataset 
size (2000 epochs for all datasets, except 100 epochs for the cryo- ET 
datasets). Our code is implemented with PyTorch Lightning (42, 43), 
and it is trained with a single NVIDIA RTX 3090. We used the Py-
Torch native automatic mixed precision for training and inferencing 
to improve speed. Processing time including training time for 100 
frames with 512 × 512 pixels took 1.5 hours to obtain denoised re-
sults for every model. Most training with small datasets rapidly fits 
and starts overfitting after several epochs. We excluded two images 
from the dataset as validation datasets, and we used the best valida-
tion loss model for denoising images.

For cryo- ET images, we generated preprocessed patches cropped 
with 1024 × 1024 pixels with overlapping 256 pixels with patches for 
the tilt images that are 4096 × 4096 pixels. A total of 50% of prepro-
cessed patches are used for the training model. We used a batch size 
of 8, and the training took about 2.5 and 1.5 hours for inference.

For N2V training, we used CSBDeep implementation as in the 
original paper with the default parameters, i.e., batch size of 128 
with 64 × 64 pixels per input patch with a CSBDeep default learning 
rate schedule.

Estimating the SNR in a real experiment dataset
We quantified the SNR of the real dataset using two independent 
measurements of pseudosame images. On the basis of this approach

where p denotes the cross- correlation coefficient between two mea-
surements (39). We used this to measure the SNR of denoising by 
calculating the correlation between two nearby frames. The image 
drift and signal difference between the two frames led to a false cal-
culation of the micrograph. However, despite this disadvantage, it 
was difficult to assert image quality without a reference image, and, 
therefore, we use this SNR value as a quality metric of images with-
out the ground truth for in situ datasets.

For cryo- ET images, we calculated the correlation between two 
summed frames from the tilt- series micrograph using the same 
equation as in the Topaz- Denoise AI paper (38). We generated odd 
and even sums for every 10 frames in the tilt- series stack using 
“SplitSum” of MotionCor2 (44) and used these two frames to calcu-
late the correlation for each tilt angle.

Au nanoparticle growth simulation in the silicon nitride 
liquid cell
A silicon nitride liquid cell time- series image was simulated using 
LPTEMsimulator (25) using MATLAB. We set the silicon nitride 
window thickness to 50 nm and the water liquid to a thickness of 50 nm. 
A total of 350 nanoparticles were simulated in the liquid cell with a 
diffusivity of 0.2 pixel2 per frame and an initial diameter of 6 nm 
with linear growth. Imaging conditions included a 20 e−/Å2 dose 
rate per image, and the size of the image was 512 × 512 with a pixel 
size of 1.045 nm. The noise in the image was generated with a detec-
tor conversion factor of 3.47.
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Pt nanoparticle rotation simulation in the graphene 
liquid cell
Graphene liquid cell time- series images of the Pt nanoparticle were 
simulated using clTEM with Python (13,  34). In the liquid cell, 
single- layered graphene sheets were located on the top and bottom 
of the water layer to a thickness of 10 nm. The atomic coordinates of 
water were obtained by molecular dynamics simulation using the 
large- scale atomic/molecular massively parallel simulator package. 
A CHARMM force field and TIP3P water model were used for the 
simulation. A total of 10,968 water molecules were created random-
ly inside the 57.28 Å–by–57.28 Å–by 100.0 Å simulation box. After 
the implementation of energy minimization to stabilize the system, 
the NVT ensemble with a 1- fs time step and Nosé- Hoover thermo-
stat was performed for 100 ps; water trajectories were recorded ev-
ery 100 fs. Atom coordinates of the 2.5- nm- sized Pt nanoparticle 
were generated with known lattice parameters. In every frame, the 
Pt nanoparticle rotates randomly between a delay of 2 and 10 frames 
with thermal vibration in both the angle and position. The TEM im-
ages of the atomic models including nanoparticle, water, and gra-
phene were obtained via clTEM simulation with a pixel size of 
0.217 Å and 512 × 512 sized images. In this case, we simulate an 
image with a dose rate set at 50 e−/Å2 per frame with in- focus on a 
C3 aberration of −0.01 mm, a C5 aberration of 3 mm, and an objec-
tive aperture of 30 mrad. The K2 detector parameter was used for 
the simulation. Each simulated TEM image included a 2.5- nm- sized 
Pt nanoparticle and a set of geometries of the water molecules.

Pt nanoparticle migration simulation on ceria support
Pt nanoparticle randomly moving on ceria support images was sim-
ulated using clTEM with Python (34). The Pt nanoparticle loaded 
on ceria support under vacuum conditions was located on the field 
of view, and we randomly shifted the atomic coordinates of the Pt 
nanoparticle, while adding drift in every frame. TEM images of 
atomic models including Pt nanoparticle and ceria were obtained 
via clTEM simulation with a pixel size of 0.332 Å with 512 × 512 
sized images. In this case, we simulated an image with a dose rate set 
at 2 e−/Å2 per frame with 7 nm over focus with a C3 aberration of 
−0.01 mm, a C5 aberration of 3 mm, and an objective aperture of 
30 mrad. The K2 detector parameter was used for the simulation.

Au nanoparticle dissolution data acquisition in the 
graphene liquid cell
Procedures for synthesizing few- layer graphene by the low- pressure 
chemical vapor deposition method and preparing graphene- coated 
TEM grids were described elsewhere (45). Tris- HCl solution (10 mM), 
20 mM FeCl3 aqueous solution, and Au nanoparticle solution were 
prepared separately to prepare the nanoparticle solution sample. 
HCl (18 μl; 37 wt % in water) was added to the 10 ml of 20 mM 
FeCl3 aqueous solution for suppressing the hydrolysis of FeCl3 (46). 
The Au nanoparticle solution was purchased from Nanoprobes Inc. 
and contained 75 μM Au nanoparticles with a diameter of approxi-
mately 1.4 nm, 50 mM sodium phosphate buffer, and 0.5 M NaCl. 
FeCl3 solution (50 μl), 75 μl of the tris- HCl solution, and 5 μl of the 
Au nanoparticle solution were mixed for preparing the graphene 
liquid cell (GLC); 0.4 μl of the mixed solution was sandwiched be-
tween the two graphene- coated TEM grids. The as- prepared GLC 
was left in an ambient condition for approximately 10 min before 
imaging to ensure complete adherence between the two graphene 
sheets. In situ TEM movies of Au nanoparticles dissolving in the 

GLC were obtained at a temporal resolution of 2.5 ms using the 
TEAM 1 microscope in the National Center for Electron Microsco-
py. The microscope was equipped with a postspecimen geometric 
and chromatic aberration corrector and K2 IS DED (Gatan). Images 
with 1920  ×  1728 pixels and a 0.317- Å pixel resolution were ac-
quired at a dose rate of ~15 e−/Å2 per frame at an acceleration volt-
age of 300 kV. Before processing, each Au nanoparticle movie was 
cropped to focus on a region of interest with 512 × 512 pixels.

Pd nanoparticle growth data acquisition in the carbon film 
liquid cell
For the in situ TEM experiment, we prepared a liquid cell compati-
ble with normal TEM holders. A precursor solution was prepared by 
mixing 10 mg of Pd(acac)2 and 0.1 ml of oleylamine into 0.9 ml of 
dichlorobenzene; 0.2 μl of the solution was loaded over the grid. We 
created the liquid cell by sandwiching two carbon film copper TEM 
grids together. The growth of the nanoparticles was monitored using 
JEM- 2100F (JEOL Ltd.) operated at the acceleration voltage of 
200 kV, equipped with an UltraScan 1000XP CCD detector (Gatan). 
The electron dose rate during in situ LPTEM analysis was maintained 
at 1000 e−/Å2·s for reducing the precursor to induce nanoparticle 
growth. In situ LPTEM videos were recorded with a frame rate of 
2 frames per second (fps) with 0.434- nm pixel resolution, and we 
subsampled 100 frames for training and denoising from the total of 
4000 frames.

Pt single atom over MoS2 film data acquisition
For the atomic dispersion of Pt on the MoS2 monolayer film, the 
chemical vapor deposition–grown MoS2 film on the sapphire sub-
strate (1 cm2) was immersed in the 2 ml of tetraammineplatinum(II) 
nitrate precursor solution [1 mM, dissolved in deionized (DI) wa-
ter] for 1 hour. After Pt deposition, Pt- MoS2 film was washed three 
times with DI water and blown by N2. For STEM imaging, Pt- MoS2 
film was transferred onto the TEM grid by a polymer- assisted wet 
transfer process. High- angle annular dark- field–STEM imaging, 
operated at an accelerating voltage of 200 kV, was performed with a 
JEM- ARM200F (JEOL Ltd.) equipped with a spherical aberration 
corrector (probe corrector) and installed at the National Center for 
Inter- University Research Facility in Seoul National University. The 
STEM images were collected at a 0.133- Å pixel resolution with a 
convergence semiangle of 19 mrad and a collection semiangle of 68 
to 280 mrad.

HER data acquisition for the MoS2 film
Polystyrene (PS) solution (9 g of polystyrene beads in 100 ml of 
toluene) was deposited on MoS2 monolayer flakes on a sapphire 
substrate using a spin coater (rotation speed: 1500 rpm, rotation 
time: 60 s). The substrate deposited by PS was baked for strong ad-
hesion between PS and MoS2 layers (at 90°C for 5 min). After im-
mersion of the substrate in DI water, the PS and MoS2 film was 
peeled off manually from the sapphire substrate. The stripped film 
was transferred to the working electrode (WE) of the microchip 
(top chip) and immersed in toluene for 1 hour to dissolve the PS 
film. After PS dissolution, the microchip with the as- transferred 
MoS2 layers was rinsed with acetone and blown by high- purity N2 
gas. The liquid cell for LPTEM analysis was composed of a top chip 
(6 mm by 4.5 mm by 300 μm) and a bottom chip (2 mm by 2 mm by 
300 μm). The top and bottom microchips included a 50- nm- thick 
electron transparent SiNx window (window dimensions: 550 μm by 
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40 μm for the top and 550 μm by 50 μm for the bottom). The WE, 
counter electrode, and reference electrode were micropatterned on 
the top chip. Metal circuits were sealed with a spacer (SU- 8, thick-
ness: 500 nm). All microchips were purchased from Protochips. 
H2SO4 aqueous solution (0.1 nN) was saturated with Ar gas for a 
prolonged bubbling time and used as the electrolyte in the liquid 
cell. The electrolyte was injected into the liquid cell by a liquid flow 
system (injection speed: 120 μl hour−1). Potentiostat (Reference 
600+, Gamry) was connected to the LPTEM holder (Poseidon, Pro-
tochips) for electrochemical experiments. In situ LPTEM experi-
ments were performed using JEM- 2100F (JEOL Ltd.) operated at an 
acceleration voltage of 200 kV, equipped with an UltraScan 1000XP 
CCD detector (Gatan). The electron dose rate during in situ LPTEM 
analysis was maintained at <0.247 e−/Å2·s to minimize beam- 
induced damage. In situ LPTEM videos were recorded at a 28.57- nm 
pixel resolution with a frame rate of 10 fps.

Cryo- ET data acquisition, processing, and 
tomogram reconstruction
A day before plating neurons, a 200- mesh carbon- coated finder gold 
grid (Quantifoil R2/1, LF) was ultraviolet sterilized for 1 hour and 
placed on a 35- mm glass bottom dish (P35G- 1.5- 14- C, MatTek) and 
treated with 150 μl of poly- d- lysine (0.1 mg/ml; P6282, Merck) solu-
tion overnight at room temperature. The dish was rinsed twice with 
phosphate- buffered saline before plating neurons. The neurons were 
harvested from Sprague Dawley rat embryos staged at E18. The cells 
were suspended in the culture medium comprising neurobasal me-
dium (NbActiv4, BrainBits), 1% penicillin- streptomycin (P4333, 
Merck), and N- 2 supplement (17502048, Thermo Fisher Scientific). 
They were plated on a 35- mm dish at a density of 400,000 cells/mm2. 
The cells were grown at 37°C and 5% CO2 conditions, and half of the 
culture medium was exchanged twice a week. Grids were blotted 
from the back side for 5 s using a sensor blotting option and plunged 
into liquid ethane with EM GP2 (Leica) and stored in LN2 before 
imaging in Cryo- EM.

Cryo- ET data were acquired on a 200- kV Glacios cryo- TEM 
(Thermo Fisher Scientific) with a Falcon 4 DED detector (Thermo 
Fisher Scientific) using TOMO 4 (Thermo Fisher Scientific) soft-
ware. Tilt series were acquired with a dose- symmetric scheme rang-
ing from −40° to 60°, and defocus was set to −5 μm. Nominal 
magnification was ×28,000, and pixel size was 3.6 Å. The total dose 
per tilt series was 123 e−/Å2, with each stack of tilt series consisting 
of 10 frames.

The raw and denoised micrographs using SHINE were processed 
with the MotionCor2 program for local motion correction and dose 
weighting (44). The denoising process is performed before the mo-
tion correction; however, for the Topaz denoised dataset, we applied 
the motion correction first and then applied the denoising model, 
which is the same as the original Topaz AI paper.

Before tomogram reconstruction of processed datasets, the con-
trast transfer function estimation of the raw tilt series was per-
formed by WARP (47). We used the IMOD software package for our 
methodology in the reconstruction of tomograms (48). The proce-
dure for tomogram reconstruction using IMOD comprised several 
steps. Initially, we preprocessed the tilt- series images by importing 
them into IMOD, where we performed a coarse alignment using a 
cross- correlation method. Subsequently, we used patch tracing to 
generate a fiducial model with a patch size of 1240 for fine align-
ment. Following the alignment process, we generated an initial 3D 

tomogram with a binning size of 2 by applying a weighted back- 
projection algorithm to the aligned tilt series. Other parameters 
were set by default.
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